Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Am J Med Genet C Semin Med Genet ; 193(1): 44-55, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36876995

RESUMO

This paper focuses on the question of, "When is the best time to identify an individual at risk for a treatable genetic condition?" In this review, we describe a framework for considering the optimal timing for pursuing genetic and genomic screening for treatable genetic conditions incorporating a lifespan approach. Utilizing the concept of a carousel that represents the four broad time periods when critical decisions might be made around genetic diagnoses during a person's lifetime, we describe genetic testing during the prenatal period, the newborn period, childhood, and adulthood. For each of these periods, we describe the objectives of genetic testing, the current status of screening or testing, the near-term vision for the future of genomic testing, the advantages and disadvantages of each approach, and the feasibility and ethical considerations of testing and treating. The notion of a "Genomics Passbook" is one where an early genomic screening evaluation could be performed on each individual through a public health program, with that data ultimately serving as a "living document" that could be queried and/or reanalyzed at prescribed times during the lifetime of that person, or in response to concerns about symptoms of a genetic disorder in that individual.


Assuntos
Testes Genéticos , Longevidade , Recém-Nascido , Humanos , Criança
2.
Am J Med Genet C Semin Med Genet ; 193(1): 30-43, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36738469

RESUMO

Most rare diseases are caused by single-gene mutations, and as such, lend themselves to a host of new gene-targeted therapies and technologies including antisense oligonucleotides, phosphomorpholinos, small interfering RNAs, and a variety of gene delivery and gene editing systems. Early successes are encouraging, however, given the substantial number of distinct rare diseases, the ability to scale these successes will be unsustainable without new development efficiencies. Herein, we discuss the need for genomic newborn screening to match pace with the growing development of targeted therapeutics and ability to rapidly develop individualized therapies for rare variants. We offer approaches to move beyond conventional "one disease at a time" preclinical and clinical drug development and discuss planned regulatory innovations that are necessary to speed therapy delivery to individuals in need. These proposals leverage the shared properties of platform classes of therapeutics and innovative trial designs including master and platform protocols to better serve patients and accelerate drug development. Ultimately, there are risks to these novel approaches; however, we believe that close partnership and transparency between health authorities, patients, researchers, and drug developers present the path forward to overcome these challenges and deliver on the promise of gene-targeted therapies for rare diseases.


Assuntos
Edição de Genes , Doenças Raras , Recém-Nascido , Humanos , Doenças Raras/diagnóstico , Doenças Raras/genética , Doenças Raras/terapia , Terapia Genética/métodos , Genômica
3.
Mol Genet Metab ; 140(1-2): 107678, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37574344

RESUMO

The advancements in population screening, including newborn screening, enables the identification of disease-causing variants and timely initiation of treatment. However, screening may also identify mild variants, non-disease variants, and variants of uncertain significance (VUS). The identification of a VUS poses a challenge in terms of diagnostic uncertainty and confusion. X-linked adrenoleukodystrophy (ALD) serves as an illustrative example of this complex issue. ALD is a monogenic neurometabolic disease with a complex clinical presentation and a lack of predictive tests for clinical severity. Despite the success of ALD newborn screening, a significant proportion (62%) of missense variants identified through newborn screening exhibit uncertainty regarding their pathogenicity. Resolving this issue requires ongoing efforts to accurately classify variants and refine screening protocols. While it is undisputable that ALD newborn screening greatly benefits boys with the disease, the identification of VUS underscores the need for continuous research and collaboration in improving screening practices.


Assuntos
Adrenoleucodistrofia , Masculino , Recém-Nascido , Humanos , Adrenoleucodistrofia/diagnóstico , Triagem Neonatal/métodos , Mutação de Sentido Incorreto
4.
Mol Genet Metab ; 134(1-2): 53-59, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33832819

RESUMO

OBJECTIVE: To provide updated evidence and consensus-based recommendations for the classification of individuals who screen positive for Krabbe Disease (KD) and recommendations for long-term follow-up for those who are at risk for late onset Krabbe Disease (LOKD). METHODS: KD experts (KD NBS Council) met between July 2017 and June 2020 to develop consensus-based classification and follow-up recommendations. The resulting newly proposed recommendations were assessed in a historical cohort of 47 newborns from New York State who were originally classified at moderate or high risk for LOKD. RESULTS: Infants identified by newborn screening with possible KD should enter one of three clinical follow-up pathways (Early infantile KD, at-risk for LOKD, or unaffected), based on galactocerebrosidase (GALC) activity, psychosine concentration, and GALC genotype. Patients considered at-risk for LOKD based on low GALC activity and an intermediate psychosine concentration are further split into a high-risk or low-risk follow-up pathway based on genotype. Review of the historical New York State cohort found that the updated follow-up recommendations would reduce follow up testing by 88%. CONCLUSION: The KD NBS Council has presented updated consensus recommendations for efficient and effective classification and follow-up of NBS positive patients with a focus on long-term follow-up of those at-risk for LOKD.


Assuntos
Consenso , Genótipo , Leucodistrofia de Células Globoides/classificação , Leucodistrofia de Células Globoides/genética , Triagem Neonatal/métodos , Guias de Prática Clínica como Assunto , Teste em Amostras de Sangue Seco , Seguimentos , Humanos , Lactente , Recém-Nascido , Transtornos de Início Tardio/diagnóstico , Transtornos de Início Tardio/etiologia , Transtornos de Início Tardio/genética , Leucodistrofia de Células Globoides/diagnóstico , Fatores de Risco
5.
J Inherit Metab Dis ; 44(3): 728-739, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33373467

RESUMO

BACKGROUND: Among boys with X-Linked adrenoleukodystrophy, a subset will develop childhood cerebral adrenoleukodystrophy (CCALD). CCALD is typically lethal without hematopoietic stem cell transplant before or soon after symptom onset. We sought to establish evidence-based guidelines detailing the neuroimaging surveillance of boys with neurologically asymptomatic adrenoleukodystrophy. METHODS: To establish the most frequent age and diagnostic neuroimaging modality for CCALD, we completed a meta-analysis of relevant studies published between January 1, 1970 and September 10, 2019. We used the consensus development conference method to incorporate the resulting data into guidelines to inform the timing and techniques for neuroimaging surveillance. Final guideline agreement was defined as >80% consensus. RESULTS: One hundred twenty-three studies met inclusion criteria yielding 1285 patients. The overall mean age of CCALD diagnosis is 7.91 years old. The median age of CCALD diagnosis calculated from individual patient data is 7.0 years old (IQR: 6.0-9.5, n = 349). Ninety percent of patients were diagnosed between 3 and 12. Conventional MRI was most frequently reported, comprised most often of T2-weighted and contrast-enhanced T1-weighted MRI. The expert panel achieved 95.7% consensus on the following surveillance parameters: (a) Obtain an MRI between 12 and 18 months old. (b) Obtain a second MRI 1 year after baseline. (c) Between 3 and 12 years old, obtain a contrast-enhanced MRI every 6 months. (d) After 12 years, obtain an annual MRI. CONCLUSION: Boys with adrenoleukodystrophy identified early in life should be monitored with serial brain MRIs during the period of highest risk for conversion to CCALD.


Assuntos
Adrenoleucodistrofia/diagnóstico , Imageamento por Ressonância Magnética , Criança , Pré-Escolar , Conferências de Consenso como Assunto , Humanos , Lactente , Recém-Nascido , Masculino , Triagem Neonatal/métodos
6.
Genet Med ; 22(6): 1108-1118, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32089546

RESUMO

PURPOSE: Newborn screening (NBS) for Krabbe disease (KD) is performed by measurement of galactocerebrosidase (GALC) activity as the primary test. This revealed that GALC activity has poor specificity for KD. Psychosine (PSY) was proposed as a disease marker useful to reduce the false positive rate for NBS and for disease monitoring. We report a highly sensitive PSY assay that allows identification of KD patients with minimal PSY elevations. METHODS: PSY was extracted from dried blood spots or erythrocytes with methanol containing d5-PSY as internal standard, and measured by liquid chromatography-tandem mass spectrometry. RESULTS: Analysis of PSY in samples from controls (N = 209), GALC pseudodeficiency carriers (N = 55), GALC pathogenic variant carriers (N = 27), patients with infantile KD (N = 26), and patients with late-onset KD (N = 11) allowed for the development of an effective laboratory screening and diagnostic algorithm. Additional longitudinal measurements were used to track therapeutic efficacy of hematopoietic stem cell transplantion (HSCT). CONCLUSION: This study supports PSY quantitation as a critical component of NBS for KD. It helps to differentiate infantile from later onset KD variants, as well as from GALC variant and pseudodeficiency carriers. Additionally, this study provides further data that PSY measurement can be useful to monitor KD progression before and after treatment.


Assuntos
Leucodistrofia de Células Globoides , Psicosina , Teste em Amostras de Sangue Seco , Galactosilceramidase/genética , Humanos , Recém-Nascido , Leucodistrofia de Células Globoides/diagnóstico , Leucodistrofia de Células Globoides/genética , Triagem Neonatal
7.
Genet Med ; 21(7): 1644-1651, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30546085

RESUMO

PURPOSE: Newborn screening for Krabbe disease (KD) originated in New York State in 2006 but has proven to have a high false positive rate and low positive predictive value. To improve accuracy of presymptomatic prediction, we propose a screening tool based on two biomarkers, psychosine and galactocerebrosidase enzyme activity (GalC). METHODS: We developed the tool using measures from dried blood spots of 166 normal newborns and tested it on dried blood spot measures from 15 newborns who later developed KD, 8 newborns identified as "high risk" by the New York screening protocol but were disease-free at follow-up, and 3 symptomatic children with onset before 4 years of age. The tool was developed from the (1-10-6)100% prediction region of the natural logarithms of psychosine and GalC measures, assuming bivariate normality, and their univariate normal limits. RESULTS: Krabbe disease was predicted correctly for every patient who developed symptoms in infancy or early childhood. None of the high-risk patients were incorrectly identified as having early KD. CONCLUSION: Bivariate analysis of psychosine and GalC in newborn blood spots can accurately predict early Krabbe symptoms, control false positive rates, and permit presymptomatic treatment.


Assuntos
Teste em Amostras de Sangue Seco , Galactosilceramidase/sangue , Leucodistrofia de Células Globoides/diagnóstico , Psicosina/sangue , Adulto , Biomarcadores/sangue , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Leucodistrofia de Células Globoides/sangue
8.
Genet Med ; 21(3): 631-640, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30093709

RESUMO

PURPOSE: We conducted a consented pilot newborn screening (NBS) for Pompe, Gaucher, Niemann-Pick A/B, Fabry, and MPS 1 to assess the suitability of these lysosomal storage disorders (LSDs) for public health mandated screening. METHODS: At five participating high-birth rate, ethnically diverse New York City hospitals, recruiters discussed the study with postpartum parents and documented verbal consent. Screening on consented samples was performed using multiplexed tandem mass spectrometry. Screen-positive infants underwent confirmatory enzymology, DNA testing, and biomarker quantitation when available. Affected infants are being followed for clinical management and long-term outcome. RESULTS: Over 4 years, 65,605 infants participated, representing an overall consent rate of 73%. Sixty-nine infants were screen-positive. Twenty-three were confirmed true positives, all of whom were predicted to have late-onset phenotypes. Six of the 69 currently have undetermined disease status. CONCLUSION: Our results suggest that NBS for LSDs is much more likely to detect individuals at risk for late-onset disease, similar to results from other NBS programs. This work has demonstrated the feasibility of using a novel consented pilot NBS study design that can be modified to include other disorders under consideration for public health implementation as a means to gather critical evidence for evidence-based NBS practices.


Assuntos
Doenças por Armazenamento dos Lisossomos/diagnóstico , Doenças por Armazenamento dos Lisossomos/genética , Triagem Neonatal/métodos , Teste em Amostras de Sangue Seco/métodos , Feminino , Testes Genéticos/métodos , Genômica , Humanos , Recém-Nascido , Masculino , Cidade de Nova Iorque , Pais , Projetos Piloto , Análise de Sequência de DNA , Espectrometria de Massas em Tandem
9.
Mol Genet Metab ; 126(2): 183-187, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30172462

RESUMO

BACKGROUND: Niemann-Pick disease type C1 (NPC1) is a rare, neurodegenerative cholesterol storage disorder. Diagnostic delay of >5 years is common due to the rarity of the disease and non-specific early symptoms. To improve diagnosis and facilitate early intervention, we previously developed a newborn screening assay based on newly identified plasma bile acid biomarkers. Because the newborn screen had been validated using dried blood spots (DBS) from already diagnosed NPC1 patients, an unanswered question was whether the screen would be able to detect individuals with NPC1 at birth. METHODS: To address this critical question, we obtained the newborn DBS for already diagnosed NPC1 subjects (n = 15) and carriers (n = 3) residing in California, New York, and Michigan states that archive residual DBS in biorepositories. For each of the DBS, we obtained two neighbor controls - DBS from patients born on the same day and in the same hospital as the NPC1 patients and carriers. 3ß,5α,6ß-trihydroxycholanic acid (bile acid A) and trihydroxycholanic acid glycine conjugate (bile acid B) were measured in the DBS using a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay. RESULTS: Bile acid B, the more specific biomarker for which the fully validated DBS assay was developed, was detected in 8/15 NPC1 patients, and elevated above the cut-off in 2/15 patients (the two samples with the shortest storage time). Bile acid B was detected in 2/2, 6/10, and 0/7 NPC1 samples that have been stored for <10.5 years, 13-20 years, and > 20 years, respectively, indicating that the glycine conjugate is detectable in DBS but may have reduced long-term stability compared with bile acid A, the precursor trihydroxycholanic acid, which was elevated in 15/15 NPC1 subjects, but not in carriers and controls. CONCLUSIONS: These results demonstrate that newborn screening for NPC1 disease is feasible using bile acid biomarkers.


Assuntos
Ácidos e Sais Biliares/análise , Teste em Amostras de Sangue Seco , Doença de Niemann-Pick Tipo C/sangue , Doença de Niemann-Pick Tipo C/diagnóstico , Bancos de Espécimes Biológicos , Biomarcadores/sangue , California , Estudos de Casos e Controles , Cromatografia Líquida , Feminino , Humanos , Recém-Nascido , Masculino , Michigan , Triagem Neonatal , New York , Estudos Retrospectivos , Espectrometria de Massas em Tandem
10.
Genet Med ; 20(8): 840-846, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29095812

RESUMO

PURPOSE: To describe a novel biochemical marker in dried blood spots suitable to improve the specificity of newborn screening for Pompe disease. METHODS: The new marker is a ratio calculated between the creatine/creatinine (Cre/Crn) ratio as the numerator and the activity of acid α-glucosidase (GAA) as the denominator. Using Collaborative Laboratory Integrated Reports (CLIR), the new marker was incorporated in a dual scatter plot that can achieve almost complete segregation between Pompe disease and false-positive cases. RESULTS: The (Cre/Crn)/GAA ratio was measured in residual dried blood spots of five Pompe cases and was found to be elevated (range 4.41-13.26; 99%ile of neonatal controls: 1.10). Verification was by analysis of 39 blinded specimens that included 10 controls, 24 samples with a definitive classification (16 Pompe, 8 false positives), and 5 with genotypes of uncertain significance. The CLIR tool showed 100% concordance of classification for the 24 known cases. Of the remaining five cases, three p.V222M homozygotes, a benign variant, were classified by CLIR as false positives; two with genotypes of unknown significance, one likely informative, were categorized as Pompe disease. CONCLUSION: The CLIR tool inclusive of the new ratio could have prevented at least 12 of 13 (92%) false-positive outcomes.


Assuntos
Doença de Depósito de Glicogênio Tipo II/diagnóstico , Triagem Neonatal/métodos , Algoritmos , Biomarcadores/sangue , Creatina/análise , Creatina/sangue , Creatinina/análise , Creatinina/sangue , Teste em Amostras de Sangue Seco/métodos , Doença de Depósito de Glicogênio Tipo II/sangue , Humanos , Recém-Nascido , Sensibilidade e Especificidade , alfa-Glucosidases/análise , alfa-Glucosidases/sangue
11.
Clin Chem ; 63(8): 1363-1369, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28592445

RESUMO

BACKGROUND: Deficiency of the lysosomal enzyme galactosylcerebrosidase (GALC) causes Krabbe disease. Newborn screening for Krabbe disease is ongoing, but improved methods for follow-up analysis of screen-positive babies are needed to better advise families and to optimize treatment. We report a new assay for the enzymatic activity of GALC in lymphocytes. METHODS: T lymphocytes were isolated from venous blood by magnetic bead technology. The assay used a close structural analog of the natural substrate and LC-MS/MS to quantify the amount of product with the aid of a chemically identical internal standard. RESULTS: The analytical range of the assay (ratio of assay response for the QC high standard to that from all non-enzymatic-dependent processes) was 20-fold greater than that for the conventional radiometric GALC assay. The LC-MS/MS could distinguish cells that were null in GALC from those that contained traces of active enzyme (down to 0.3% of normal). There was a good correlation between the level of residual GALC activity in lymphocytes and the severity of Krabbe disease. CONCLUSIONS: The new assay can measure small amounts of residual GALC activity in leukocytes with high accuracy compared to previous assays and can contribute, along with genotyping, biomarker analysis, and neurological imaging, a better plan for post-newborn screening follow-up for Krabbe disease.


Assuntos
Galactosilceramidase/metabolismo , Leucodistrofia de Células Globoides/enzimologia , Triagem Neonatal/métodos , Linfócitos T/enzimologia , Criança , Cromatografia Líquida , Galactosilceramidase/análise , Galactosilceramidase/deficiência , Humanos , Recém-Nascido , Leucodistrofia de Células Globoides/metabolismo , Linfócitos T/metabolismo , Espectrometria de Massas em Tandem
12.
Clin Chem ; 63(4): 842-851, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28196920

RESUMO

BACKGROUND: Pompe disease (PD) is the first lysosomal storage disorder to be added to the Recommended Uniform Screening Panel for newborn screening. This condition has a broad phenotypic spectrum, ranging from an infantile form (IOPD), with severe morbidity and mortality in infancy, to a late-onset form (LOPD) with variable onset and progressive weakness and respiratory failure. Because the prognosis and treatment options are different for IOPD and LOPD, it is important to accurately determine an individual's phenotype. To date, no enzyme assay of acid α-glucosidase (GAA) has been described that can differentiate IOPD vs LOPD using blood samples. METHODS: We incubated 10 µL leukocyte lysate and 25 µL GAA substrate and internal standard (IS) assay cocktail for 1 h. The reaction was purified by a liquid-liquid extraction. The extracts were evaporated and reconstituted in 200 µL methanol and analyzed by LC-MS/MS for GAA activity. RESULTS: A 700-fold higher analytical range was observed with the LC-MS/MS assay compared to the fluorometric method. When GAA-null and GAA-containing fibroblast lysates were mixed, GAA activity could be measured accurately even in the range of 0%-1% of normal. The leukocyte GAA activity in IOPD (n = 4) and LOPD (n = 19) was 0.44-1.75 nmol · h-1 · mg-1 and 2.0-6.5 nmol · h-1 · mg-1, respectively, with no overlap. The GAA activity of pseudodeficiency patients ranged from 3.0-28.1 nmol · h-1 · mg-1, showing substantial but incomplete separation from the LOPD group. CONCLUSIONS: This assay allows determination of low residual GAA activity in leukocytes. IOPD, LOPD, and pseudodeficiency patients can be partially differentiated by measuring GAA using blood samples.


Assuntos
Cromatografia Líquida , Doença de Depósito de Glicogênio Tipo II/sangue , Leucócitos/enzimologia , Triagem Neonatal , Espectrometria de Massas em Tandem , alfa-Glucosidases/sangue , Adulto , Alelos , Criança , Pré-Escolar , Doença de Depósito de Glicogênio Tipo II/diagnóstico , Doença de Depósito de Glicogênio Tipo II/enzimologia , Humanos , Lactente , Recém-Nascido , Leucócitos/metabolismo , alfa-Glucosidases/genética , alfa-Glucosidases/metabolismo
13.
Mol Genet Metab ; 122(4): 209-215, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29089175

RESUMO

X-linked adrenoleukodystrophy (ALD) is the most common leukodystrophy with a birth incidence of 1:14,700 live births. The disease is caused by mutations in ABCD1 and characterized by very long-chain fatty acids (VLCFA) accumulation. In childhood, male patients are at high-risk to develop adrenal insufficiency and/or cerebral demyelination. Timely diagnosis is essential. Untreated adrenal insufficiency can be life-threatening and hematopoietic stem cell transplantation is curative for cerebral ALD provided the procedure is performed in an early stage of the disease. For this reason, ALD is being added to an increasing number of newborn screening programs. ALD newborn screening involves the quantification of C26:0-lysoPC in dried blood spots which requires a dedicated method. C26:0-carnitine, that was recently identified as a potential new biomarker for ALD, has the advantage that it can be added as one more analyte to the routine analysis of amino acids and acylcarnitines already in use. The first objective of this study was a comparison of the sensitivity of C26:0-carnitine and C26:0-lysoPC in dried blood spots from control and ALD newborns both in a case-control study and in newborns included in the New York State screening program. While C26:0-lysoPC was elevated in all ALD newborns, C26:0-carnitine was elevated only in 83%. Therefore, C26:0-carnitine is not a suitable biomarker to use in ALD newborn screen. In women with ALD, plasma VLCFA analysis results in a false negative result in approximately 15-20% of cases. The second objective of this study was to compare plasma VLCFA analysis with C26:0-carnitine and C26:0-lysoPC in dried blood spots of women with ALD. Our results show that C26:0-lysoPC was elevated in dried blood spots from all women with ALD, including from those with normal plasma C26:0 levels. This shows that C26:0-lysoPC is a better and more accurate biomarker for ALD than plasma VLCFA levels. We recommend that C26:0-lysoPC be added to the routine biochemical array of diagnostic tests for peroxisomal disorders.


Assuntos
Adrenoleucodistrofia/diagnóstico , Carnitina/análise , Teste em Amostras de Sangue Seco/métodos , Ácidos Graxos/sangue , Lisofosfatidilcolinas/análise , Triagem Neonatal/métodos , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Adrenoleucodistrofia/complicações , Adrenoleucodistrofia/fisiopatologia , Adulto , Biomarcadores/sangue , Estudos de Casos e Controles , Estudos de Coortes , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Feminino , Humanos , Recém-Nascido , Masculino , Países Baixos , New York , Sensibilidade e Especificidade
14.
Mol Genet Metab ; 122(3): 134-139, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28739201

RESUMO

BACKGROUND: Aicardi Goutières Syndrome (AGS) is a heritable interferonopathy associated with systemic autoinflammation causing interferon (IFN) elevation, central nervous system calcifications, leukodystrophy and severe neurologic sequelae. An infant with TREX1 mutations was recently found to have abnormal C26:0 lysophosphatidylcholine (C26:0 Lyso-PC) in a newborn screening platform for X-linked adrenoleukodystrophy, prompting analysis of this analyte in retrospectively collected samples from individuals affected by AGS. METHODS: In this study, we explored C26:0 Lyso-PC levels and IFN signatures in newborn blood spots and post-natal blood samples in 19 children with a molecular and clinical diagnosis of AGS and in the blood spots of 22 healthy newborns. We used Nanostring nCounter™ for IFN-induced gene analysis and a high-performance liquid chromatography with tandem mass spectrometry (HPLC MS/MS) newborn screening platform for C26:0 Lyso-PC analysis. RESULTS: Newborn screening cards from patients across six AGS associated genes were collected, with a median disease presentation of 2months. Thirteen out of 19 (68%) children with AGS had elevations of first tier C26:0 Lyso-PC (>0.4µM), that would have resulted in a second screen being performed in a two tier screening system for X-linked adrenoleukodystrophy (X-ALD). The median (95%CI) of first tier C26:0 Lyso-PC values in AGS individuals (0.43µM [0.37-0.48]) was higher than that seen in controls (0.21µM [0.21-0.21]), but lower than X-ALD individuals (0.72µM [0.59-0.84])(p<0.001). Fourteen of 19 children had elevated expression of IFN signaling on blood cards relative to controls (Sensitivity 73.7%, 95%CI 51-88%, Specificity 95%, 95% CI 78-99%) including an individual with delayed disease presentation (36months of age). All five AGS patients with negative IFN signature at birth had RNASEH2B mutations. Consistency of agreement between IFN signature in neonatal and post-natal samples was high (0.85). CONCLUSION: This suggests that inflammatory markers in AGS can be identified in the newborn period, before symptom onset. Additionally, since C26:0 Lyso-PC screening is currently used in X-ALD newborn screening panels, clinicians should be alert to the fact that AGS infants may present as false positives during X-ALD screening.


Assuntos
Doenças Autoimunes do Sistema Nervoso/sangue , Doenças Autoimunes do Sistema Nervoso/diagnóstico , Interferons/sangue , Lisofosfatidilcolinas/sangue , Triagem Neonatal/métodos , Malformações do Sistema Nervoso/sangue , Malformações do Sistema Nervoso/diagnóstico , Doenças Autoimunes do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/fisiopatologia , Pré-Escolar , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Teste em Amostras de Sangue Seco/métodos , Exodesoxirribonucleases/genética , Feminino , Humanos , Lactente , Recém-Nascido , Inflamação/sangue , Inflamação/genética , Interferons/genética , Masculino , Mutação , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/fisiopatologia , Fosfoproteínas/genética , Estudos Retrospectivos , Sensibilidade e Especificidade , Espectrometria de Massas em Tandem , Transcriptoma/imunologia
15.
J Neurosci Res ; 94(11): 1063-75, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27638592

RESUMO

Live newborn screening for Krabbe's disease (KD) was initiated in New York on August 7, 2006, and started in Missouri in August, 2012. As of August 7, 2015, nearly 2.5 million infants had been screened, and 443 (0.018%) infants had been referred for followup clinical evaluation; only five infants had been determined to have KD. As of August, 2015, the combined incidence of infantile KD in New York and Missouri is ∼1 per 500,000; however, patients who develop later-onset forms of KD may still emerge. This Review provides an overview of the processes used to develop the screening and followup algorithms. It also includes updated results from screening and discussion of observations, lessons learned, and suggested areas for improvement that will reduce referral rates and the number of infants defined as at risk for later-onset forms of KD. Although current treatment options for infants with early-infantile Krabbe's disease are not curative, over time treatment options should improve; in the meantime, it is essential to evaluate the lessons learned and to ensure that screening is completed in the best possible manner until these improvements can be realized. © 2016 Wiley Periodicals, Inc.


Assuntos
Leucodistrofia de Células Globoides/diagnóstico , Triagem Neonatal , Algoritmos , Animais , Humanos , Recém-Nascido
16.
J Neurosci Res ; 94(11): 1076-83, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27638593

RESUMO

Newborn screening (NBS) for Krabbe's disease (KD) has been instituted in several states, and New York State has had the longest experience. After an initial screening of dried blood spots, samples from individuals with galactocerebrosidase (GALC) values below a given cutoff level were subjected to additional testing, including sequencing of the GALC gene. This resulted in the identification of mutations that had previously been found in confirmed KD patients and of variants that had never previously been reported. Some individuals had variants considered to be polymorphisms, alone or on the same allele as another mutation. To help with counseling of families on the risk for a newborn to develop KD, expression studies were conducted with these variants identified by NBS. GALC activity was measured in COS1 cells for 140 constructs and compared with mutations that had previously been seen in confirmed cases of KD. When a polymorphism was present on the same allele as the variant, expressed activity was measured with and without the polymorphism. In some cases the presence of the polymorphism greatly lowered the measured GALC activity, possibly making it disease causing. Although it is not possible to predict conclusively whether a variant is severe and will result in infantile KD if two such variants are present or whether a variant is mild and will result in late-onset disease, some variants clearly are not disease causing. This is the largest expression study of GALC variants/mutations found in NBS and confirmed KD cases. This work will be helpful for counseling families of screen-positive newborns found to have low GALC activity. © 2016 Wiley Periodicals, Inc.


Assuntos
Galactosilceramidase/genética , Leucodistrofia de Células Globoides/genética , Mutação/genética , Animais , Células COS , Cercopithecus , Feminino , Galactosilceramidase/metabolismo , Testes Genéticos , Haplótipos , Humanos , Recém-Nascido , Masculino , Mutagênese Sítio-Dirigida/métodos , New York , Transfecção
17.
J Neurosci Res ; 94(11): 1084-93, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27638594

RESUMO

Krabbe's disease (KD) is a fatal neurodegenerative disorder, with the early-infantile form (EIKD) defined by onset of symptoms before age 6 months. Early and highly accurate identification of EIKD is required to maximize benefits of hematopoietic stem cell transplantation treatment. This study investigates the potential for accurate prediction of EIKD based on a novel newborn screening (NBS) tool developed from two biomarkers, galactocerebrosidase (GALC) enzyme activity and galactosylsphingosine concentration (psychosine [PSY]). Normative information about PSY and GALC, derived from distinct samples of normal newborns, was used to develop the novel diagnostic tool. Bivariate normal limits (BVNL) were constructed, assuming a multivariate normal distribution of natural logarithms of GALC and PSY of normal newborns. The (lnGALC, lnPSY) points for newborns in various "abnormal groups," including one group of infants who subsequently suffered EIKD, were plotted on a graph of BVNL. The points for all EIKD patients fell outside of BVNL (100% sensitivity). In a simulation study to compare the false-positive rate of existing univariate methods of diagnosis with our new BVNL-based method, we generated 100 million normal newborn data points. All fell within BVNL (i.e., zero false positives), whereas 5,682 false positives were observed when applying a two-tiered univariate method of the type suggested in the literature. These results suggest that (lnGALC, lnPSY) BVNLs will allow highly accurate prediction of EIKD, whereas two-tiered univariate approaches will not. Redevelopment of the BVNL based on GALCs and PSYs measured on a common large sample of normal newborns is required for NBS use. © 2016 Wiley Periodicals, Inc.


Assuntos
Galactosilceramidase/metabolismo , Leucodistrofia de Células Globoides/diagnóstico , Leucodistrofia de Células Globoides/metabolismo , Triagem Neonatal/métodos , Psicosina/metabolismo , Feminino , Humanos , Recém-Nascido , Masculino , Valor Preditivo dos Testes
18.
Genet Med ; 18(12): 1235-1243, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27171547

RESUMO

BACKGROUND: Early infantile Krabbe disease is rapidly fatal, but hematopoietic stem cell transplantation (HSCT) may improve outcomes if performed soon after birth. New York State began screening all newborns for Krabbe disease in 2006. METHODS: Infants with abnormal newborn screen results for Krabbe disease were referred to specialty-care centers. Newborns found to be at high risk for Krabbe disease underwent a neurodiagnostic battery to determine the need for emergent HSCT. RESULTS: Almost 2 million infants were screened. Five infants were diagnosed with early infantile Krabbe disease. Three died, two from HSCT-related complications and one from untreated disease. Two children who received HSCT have moderate to severe developmental delays. Forty-six currently asymptomatic children are considered to be at moderate or high risk for development of later-onset Krabbe disease. CONCLUSIONS: These results show significant HSCT-associated morbidity and mortality in early infantile Krabbe disease and raise questions about its efficacy when performed in newborns diagnosed through newborn screening. The unanticipated identification of "at risk" children introduces unique ethical and medicolegal issues. New York's experience raises questions about the risks, benefits, and practicality of screening newborns for Krabbe disease. It is imperative that objective assessments be made on an ongoing basis as additional states begin screening for this disorder.Genet Med 18 12, 1235-1243.


Assuntos
Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/terapia , Programas de Rastreamento , Triagem Neonatal , Feminino , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Lactente , Recém-Nascido , Leucodistrofia de Células Globoides/diagnóstico , Leucodistrofia de Células Globoides/mortalidade , New York , Fatores de Risco
19.
Genet Med ; 18(3): 239-48, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26795590

RESUMO

PURPOSE: Krabbe disease (KD) results from galactocerebrosidase (GALC) deficiency. Infantile KD symptoms include irritability, progressive stiffness, developmental delay, and death. The only potential treatment is hematopoietic stem cell transplantation. New York State (NYS) implemented newborn screening for KD in 2006. METHODS: Dried blood spots from newborns were assayed for GALC enzyme activity using mass spectrometry, followed by molecular analysis for those with low activity (≤12% of the daily mean). Infants with low enzyme activity and one or more mutations were referred for follow-up diagnostic testing and neurological examination. RESULTS: Of >1.9 million screened, 620 infants were subjected to molecular analysis and 348 were referred for diagnostic testing. Five had enzyme activities and mutations consistent with infantile KD and manifested clinical/neurodiagnostic abnormalities. Four underwent transplantation, two are surviving with moderate to severe handicaps, and two died from transplant-related complications. The significance of many sequence variants identified is unknown. Forty-six asymptomatic infants were found to be at moderate to high risk for disease. CONCLUSIONS: The positive predictive value of KD screening in NYS is 1.4% (5/346) considering confirmed infantile cases. The incidence of infantile KD in NYS is approximately 1 in 394,000, but it may be higher for later-onset forms.


Assuntos
Galactosilceramidase/genética , Galactosilceramidase/metabolismo , Leucodistrofia de Células Globoides/diagnóstico , Triagem Neonatal/métodos , Polimorfismo de Nucleotídeo Único , Algoritmos , Teste em Amostras de Sangue Seco , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Recém-Nascido , Leucodistrofia de Células Globoides/enzimologia , Leucodistrofia de Células Globoides/terapia , Espectrometria de Massas , New York , Valor Preditivo dos Testes , Resultado do Tratamento
20.
J Inherit Metab Dis ; 38(5): 923-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25762404

RESUMO

BACKGROUND: Newborn screening (NBS) for Krabbe disease (KD) in New York and Missouri is conducted by measuring galactocerebrosidase (GALC) activity using tandem mass spectrometry (MS/MS). These NBS efforts have shown that the incidence of KD is unexpectedly low (1:400,000) while many individuals (ca. 1:6000) with reduced GALC activity and genotypes of uncertain significance are detected and subjected to follow up testing. Psychosine (PSY) is a putative marker of KD progression and can be measured in dried blood spots (DBS). We sought to determine the role that PSY levels play in NBS for KD, follow up, and treatment monitoring. METHODS: PSY was eluted from DBS with methanol containing N,N-dimethyl-D-erythro-sphingosine as internal standard (IS). Liquid chromatography-MS/MS was conducted over 17 minutes in the multiple reaction monitoring positive mode to follow the precursor to product species transitions for PSY and IS. Separation of the structural isomers PSY and glucosylsphingosine was accomplished by hydrophilic interaction liquid chromatography. RESULTS: Pre-analytical and analytical factors were studied and revealed satisfactory results. PSY was also measured in DBS collected from controls (range: <8 nmol/L, N = 220), KD patients at various disease stages (range: 8-112, N = 26), and GALC mutation carriers (range: <15 nmol/L, N = 18). CONCLUSIONS: PSY measurement in DBS could serve as a 2nd tier assay in NBS for KD, simplify and reduce the cost of follow up protocols, help determine disease progression, and be used to monitor KD patients following hematopoietic stem cell transplantation. However, additional chronological measurements of PSY in KD patients are required to confirm these possibilities.


Assuntos
Teste em Amostras de Sangue Seco , Leucodistrofia de Células Globoides/diagnóstico , Triagem Neonatal/métodos , Psicosina/sangue , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Teste em Amostras de Sangue Seco/normas , Humanos , Lactente , Recém-Nascido , Leucodistrofia de Células Globoides/sangue , Limite de Detecção , Pessoa de Meia-Idade , Triagem Neonatal/normas , Psicosina/análise , Melhoria de Qualidade , Valores de Referência , Reprodutibilidade dos Testes , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA