Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Mol Evol ; 88(8-9): 689-702, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33009923

RESUMO

Myriad environmental and biological traits have been investigated for their roles in influencing the rate of molecular evolution across various taxonomic groups. However, most studies have focused on a single trait, while controlling for additional factors in an informal way, generally by excluding taxa. This study utilized a dataset of cytochrome c oxidase subunit I (COI) barcode sequences from over 7000 ray-finned fish species to test the effects of 27 traits on molecular evolutionary rates. Environmental traits such as temperature were considered, as were traits associated with effective population size including body size and age at maturity. It was hypothesized that these traits would demonstrate significant correlations with substitution rate in a multivariable analysis due to their associations with mutation and fixation rates, respectively. A bioinformatics pipeline was developed to assemble and analyze sequence data retrieved from the Barcode of Life Data System (BOLD) and trait data obtained from FishBase. For use in phylogenetic regression analyses, a maximum likelihood tree was constructed from the COI sequence data using a multi-gene backbone constraint tree covering 71% of the species. A variable selection method that included both single- and multivariable analyses was used to identify traits that contribute to rate heterogeneity estimated from different codon positions. Our analyses revealed that molecular rates associated most significantly with latitude, body size, and habitat type. Overall, this study presents a novel and systematic approach for integrative data assembly and variable selection methodology in a phylogenetic framework.


Assuntos
Código de Barras de DNA Taxonômico , Evolução Molecular , Peixes , Animais , Meio Ambiente , Peixes/classificação , Peixes/genética , Fenótipo , Filogenia
2.
Heredity (Edinb) ; 122(5): 513-524, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30202084

RESUMO

The evolutionary speed hypothesis (ESH) suggests that molecular evolutionary rates are higher among species inhabiting warmer environments. Previously, the ESH has been investigated using small numbers of latitudinally-separated sister lineages; in animals, these studies typically focused on subsets of Chordata and yielded mixed support for the ESH. This study analyzed public DNA barcode sequences from the cytochrome c oxidase subunit I (COI) gene for six of the largest animal phyla (Arthropoda, Chordata, Mollusca, Annelida, Echinodermata, and Cnidaria) and paired latitudinally-separated taxa together informatically. Of 8037 lineage pairs, just over half (51.6%) displayed a higher molecular rate in the lineage inhabiting latitudes closer to the equator, while the remainder (48.4%) displayed a higher rate in the higher-latitude lineage. To date, this study represents the most comprehensive analysis of latitude-related molecular rate differences across animals. While a statistically-significant pattern was detected from our large sample size, our findings suggest that the EHS may not serve as a strong universal mechanism underlying the latitudinal diversity gradient and that COI molecular clocks may generally be applied across latitudes. This study also highlights the merits of using automation to analyze large DNA barcode datasets.


Assuntos
Evolução Molecular , Clima Tropical , Animais , Biodiversidade , Código de Barras de DNA Taxonômico , DNA Mitocondrial/genética , Bases de Dados Genéticas , Complexo IV da Cadeia de Transporte de Elétrons/genética , Geografia , Invertebrados/classificação , Invertebrados/genética , Modelos Lineares , Filogenia
3.
Genome ; 61(11): 787-796, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30365909

RESUMO

Chironomid flies (non-biting midges) are among the most abundant and diverse animals in Arctic regions, but detailed analyses of species distributions and biogeographical patterns are hampered by challenging taxonomy and reliance on morphology for species-level identification. Here we take advantage of available DNA barcode data of Arctic Chironomidae in BOLD to analyse similarities in species distributions across a northern Nearctic - West Palearctic gradient. Using more than 260 000 barcodes representing 4666 BINs (Barcode Index Numbers) and 826 named species (some with interim names) from a combination of public and novel data, we show that the Greenland chironomid fauna shows affinities to both the Nearctic and the West Palearctic regions. While raw taxon counts indicate a strong Greenland - North American affinity, comparisons using Chao's dissimilarity metric support a slightly higher similarity between Greenland and West Palearctic chironomid communities. Results were relatively consistent across different definitions of species taxonomic units, including morphologically determined species, BINs, and superBINs based on a ∼4.5% threshold. While most taxa found in Greenland are shared with at least one other region, reflecting circum-Arctic dispersal, our results also reveal that Greenland harbours a small endemic biodiversity. Our exploratory study showcases how DNA barcoding efforts using standardized gene regions contribute to an understanding of broad-scale patterns in biogeography by enabling joint analysis of public DNA sequence data derived from diverse prior studies.


Assuntos
Chironomidae/classificação , Código de Barras de DNA Taxonômico , Animais , Regiões Árticas , Biodiversidade , Chironomidae/genética , Feminino , Masculino , Filogeografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA