Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 34(10)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34874281

RESUMO

We report the observation of nonlinear anomalous Hall effect (NLAHE) in the multilayered organic conductor α-(BEDT-TTF)2I3in the charge order (CO) insulating phase just under the critical pressure for transition into two-dimensional (2D) massless Dirac fermion (DF) phase. We successfully extracted the finite nonlinear Hall voltage proportional to square current at zero magnetic field. The observed NLAHE features, current direction dependence and correlation with CO, are consistent with the previous estimation assuming 2D massive DF with a pair of tilted Dirac cones. This is the first observation of topological transport in organic conductors, and also the first example of NLAHE in the electronic phase with spontaneous symmetry breaking.

2.
J Am Chem Soc ; 129(27): 8510-8, 2007 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-17571885

RESUMO

New charge-transfer salts based on an unsymmetrical donor DMET [dimethyl(ethylenedithio)diselenadithiafulvalene] and metal halide anions (DMET)4MIICl4(TCE)2 (M = Mn, Co, Cu, Zn; TCE = 1,1,2-trichloroethane) have been synthesized and characterized by transport and magnetic measurements. The crystal structures of the DMET salts are isostructural, consisting of a quasi-one-dimensional stack of DMET and insulating layers containing metal halide anions and TCE. Semimetallic band structures are calculated by the tight-binding approximation. Metal-insulator transitions are observed at TMI = 25, 15, 5-20, and 13 K for M = Mn, Co, Cu, and Zn, respectively. The M = Cu salt exhibits anisotropic conduction at ambient pressure, being semiconducting in the intralayer current direction but metallic for the interplane current direction, down to T(MI). The metal-insulator transitions are suppressed under pressure. In the M = Co and Zn salts, large magnetoresistances with hysteresis are observed at low temperatures, on which Shubnikov-de Haas oscillations are superposed above 30 T. In the M = Cu salt, no hysteresis is observed but clear Shubnikov-de Haas oscillations are observed. The magnetoresistance is small and monotonic in the M = Mn salt. Paramagnetic susceptibilities of the spins of the magnetic ions are observed for the M = Mn, Co, and Cu salts with small negative Weiss temperatures of approximately 1 K. In the nonmagnetic M = Zn salt, Pauli-like pi-electron susceptibility that vanishes at TMI is observed. The ground state of the pi-electron system is understood as being a spin density wave state caused by imperfect nesting of the Fermi surfaces. In this pi-electron system, the magnetic ions of the M = Mn, Co, and Cu salts interact differently, exhibiting a variety of transport behaviors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA