Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
J Periodontal Res ; 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38736036

RESUMO

Various mechanical loadings, including mechanical stress, orthodontics forces, and masticatory force, affect the functions of periodontal ligament cells. Regulation of periodontal tissue destruction, formation, and differentiation functions are crucial processes for periodontal regeneration therapy. Numerous studies have reported that different types of mechanical loading play a role in maintaining periodontal tissue matrix homeostasis, and osteogenic differentiation of the periodontal ligament cells. This scoping review aims to evaluate the studies regarding the effects of various mechanical loadings on the secretion of extracellular matrix (ECM) components, regulation of the balance between formation and destruction of periodontal tissue matrix, osteogenic differentiation, and multiple differentiation functions of the periodontal ligament. An electronic search for this review has been conducted on two databases; MEDLINE via PubMed and SCOPUS. Study selection criteria included original research written in English that reported the effects of different mechanical loadings on matrix homeostasis and differentiation potential of periodontal ligament cells. The final 204 articles were mainly included in the present scoping review. Mechanical forces of the appropriate magnitude, duration, and pattern have a positive influence on the secretion of ECM components such as collagen, as well as regulate the secretion of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases. Additionally, these forces regulate a balance between osteoblastic and osteoclast differentiation. Conversely, incorrect mechanical loadings can lead to abnormal formation and destruction of both soft and hard tissue. This review provides additional insight into how mechanical loadings impact ECM homeostasis and multiple differentiation functions of periodontal ligament cells (PDLCs), thus making it valuable for regenerative periodontal treatment. In combination with advancing technologies, the utilization of ECM components, application of different aspects of mechanical force, and differentiation potential of PDLCs could bring potential benefits to future periodontal regeneration therapy.

2.
Oral Dis ; 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243590

RESUMO

OBJECTIVES: This study investigated the miRNA expression profile in Notch-activated human dental stem pulp stem cells (DPSCs) and validated the functions of miRNAs in modulating the odonto/osteogenic properties of DPSCs. METHODS: DPSCs were treated with indirect immobilized Jagged1. The miRNA expression profile was examined using NanoString analysis. Bioinformatic analysis was performed, and miRNA expression was validated. Odonto/osteogenic differentiation was examined using alkaline phosphatase staining, Alizarin Red S staining, as well as odonto/osteogenic-related gene and protein expression. RESULTS: Fourteen miRNAs were differentially expressed in Jagged1-treated DPSCs. Pathway analysis revealed that altered miRNAs were associated with TGF-ß, Hippo, ErbB signalling pathways, FoxO and Ras signalling. Target prediction analysis demonstrated that 7604 genes were predicted to be targets for these altered miRNAs. Enrichment analysis revealed relationships to various DNA bindings. Among differentially expressed miRNA, miR-296-3p and miR-450b-5p were upregulated under Jagged1-treated conditions. Overexpression of miR-296-3p and miR-450b-5p enhanced mineralization and upregulation of odonto/osteogenic-related genes, whereas inhibition of these miRNAs revealed opposing results. The miR-296-3p and miR-450b-5p inhibitors attenuated the effects of Jagged1-induced mineralization in DPSCs. CONCLUSIONS: Jagged-1 promotes mineralization in DPSCs that are partially regulated by miRNA. The novel understanding of these miRNAs could lead to innovative controlled mechanisms that can be applied to modulate biology-targeted dental materials.

3.
Int Endod J ; 57(2): 219-236, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37971040

RESUMO

AIM: To investigate the effect of IWP-2, Wnt inhibitor, on human dental pulp stem cells (hDPSCs) responses. METHODOLOGY: hDPSCs were isolated from human dental pulp tissues. Cells were treated with 25 µM IWP-2 for 24 h, and subsequently, the gene expression profile was examined using high-throughput RNA sequencing. The mRNA expression was analysed using qPCR. The effect of IWP-2 was investigated in both normal and LPS-induced hDPSCs (inflamed hDPSCs). CD4+ T cells and CD14+ monocyte-derived macrophages were cultured with conditioned media of IWP-2 treated hDPSCs to observe the immunosuppressive property. RESULTS: RNA sequencing indicated that IWP-2 significantly downregulated several KEGG pathways, including cytokine-cytokine receptor interaction, IL-17 signalling pathway, and TNF signalling pathway. In both normal and inflamed conditions, IWP-2 markedly upregulated TGFB1 mRNA expression while the mRNA expression of pro-inflammatory cytokines, TNFA, IL1B, IFNG, and IL6, was inhibited. In the inhibition experiment, the pretreatment with p38, MAPK, or PI3K inhibitors abolished the effects of IWP-2 in LPS-induced inflammation. In terms of immune cells, IWP-2-treated-inflamed hDPSCs conditioned media attenuated T cell proliferation and regulated regulatory T cell differentiation. In addition, the migratory property of macrophage was decreased after being exposed to IWP-2-treated inflamed hDPSCs conditioned media. CONCLUSION: IWP-2 suppressed inflammatory cytokine expression in both normal and inflamed hDPSCs. Moreover, hDPSCs exerted the immunosuppressive property after IWP-2 treatment. These results suggest the role of Wnt in inflammatory responses and immunomodulation in dental pulp tissues.


Assuntos
Polpa Dentária , Fosfatidilinositol 3-Quinases , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Células-Tronco , Proliferação de Células , Citocinas/metabolismo , RNA Mensageiro/metabolismo , Diferenciação Celular , Células Cultivadas
4.
BMC Oral Health ; 24(1): 148, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297241

RESUMO

BACKGROUND: This study aimed to investigate the effects of various toll-like receptor (TLR) and C-type lectin receptor (CLR) ligands on osteogenic differentiation in human dental pulp stem cells (hDPSCs). METHODS: hDPSCs were cultured and treated with various concentrations (0.01, 0.1, 1.0, and 10 µg/mL) of TLR or CLR agonists (PG-LPS, E.coli LPS, poly(I:C), Pam3CSK4, Furfurman, and Zymosan). Cell viability was determined by MTT assay. The effects of TLR and CLR agonists on osteogenic differentiation of hDPSCs were measured by alkaline phosphatase (ALP) activity, Alizarin Red S staining, and Von Kossa staining. In addition, the mRNA expression of osteogenesis-related genes (ALP, COL1A1, RUNX2, OSX, OCN and DMP1) was examined by RT-qPCR. A non-parametric analysis was employed for the statistical analyses. The statistically significant difference was considered when p < 0.05. RESULTS: Treatment with TLR and CLR agonists was associated with an increase in hDPSCs' colony-forming unit ability. Compared with the control group, TLR and CLR agonists significantly inhibited the osteogenic differentiation of hDPSCs by decreasing the ALP activity, mineralised nodule formation, and mRNA expression levels of osteogenesis-related genes (ALP, COL1A1, RUNX2, OSX, OCN and DMP1). The inhibition of TRIF but not Akt signalling rescued the effects of TLR and CLR agonist attenuating hDPSCs' mineralisation. CONCLUSIONS: The activation of TLRs or CLRs exhibited an inhibitory effect on osteogenic differentiation of hDPSCs via the TRIF-dependent signalling pathway.


Assuntos
Polpa Dentária , Osteogênese , Humanos , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Diferenciação Celular , Receptores Toll-Like/metabolismo , Células-Tronco , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/farmacologia , RNA Mensageiro/metabolismo , Células Cultivadas
5.
Oral Dis ; 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37466141

RESUMO

OBJECTIVE: Periostin (PN), a major matricellular periodontal ligament (PDL) protein, modulates the remodeling of the PDL and bone, especially under mechanical stress. This study investigated the requirement of PN-integrin signaling in force-induced expression of transforming growth factor-beta 1 (TGF-ß1) and alpha-smooth muscle actin (α-SMA) in human PDL stem cells (hPDLSCs). METHODS: Cells were stimulated with intermittent compressive force (ICF) using computerized controlled apparatus. Cell migration was examined using in vitro scratch assay. The mRNA expression was examined using real-time polymerase chain reaction. The protein expression was determined using immunofluorescent staining and western blot analysis. RESULTS: Stimulation with ICF for 24 h increased the expression of PN, TGF-ß1, and α-SMA, along with increased SMAD2/3 phosphorylation. Knockdown of POSTN (PN gene) decreased the protein levels of TGF-ß1 and pSMAD2/3 upon force stimulation. POSTN knockdown of hPDLSCs resulted in delayed cell migration, as determined by a scratch assay. However, migration improved after seeding these knockdown cells on pre-PN-coated surfaces. Further, the knockdown of αVß5 significantly attenuated the force-induced TGF-ß1 expression. CONCLUSION: Our findings indicate the importance of PN-αVß5 interactions in ICF-induced TGF-ß1 signaling and the expression of α-SMA. Findings support the critical role of PN in maintaining the PDL's tissue integrity and homeostasis.

6.
Oral Dis ; 29(2): 735-746, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34558757

RESUMO

OBJECTIVE: To investigate the role of phosphatase and tensin homolog (PTEN) in dental pulp cells (hDPs) and adipose-derived mesenchymal stem cells (hADSCs). MATERIALS AND METHODS: Genetic variant was identified with exome sequencing. The hDPs isolated from a patient with Cowden syndrome were investigated for their proliferation, osteogenesis, adipogenesis, and gene expression compared with controls. The normal hDPs and hADSCs were treated with the PTEN inhibitor, VO-OHpic trihydrate (VOT), to investigate the effect of PTEN inhibition. RESULTS: A heterozygous nonsense PTEN variant, c.289C>T (p.Gln97*), was identified in the Cowden patient's blood and intraoral lipomas. The mutated hDPs showed significantly decreased proliferation, but significantly upregulated RUNX2 and OSX expression and mineralization, indicating enhanced osteogenic ability in mutated cells. The normal hDPs treated with VOT showed the decreases in proliferation, colony formation, osteogenic marker genes, alkaline phosphatase activity, and mineral deposition, suggesting that PTEN inhibition diminishes proliferation and osteogenic potential of hDPs. Regarding adipogenesis, the VOT-treated hADSCs showed a reduced number of cells containing lipid droplets, suggesting that PTEN inhibition might compromise adipogenic ability of hADSCs. CONCLUSIONS: PTEN regulates proliferation, enhances osteogenesis of hDPs, and induces adipogenesis of hADSCs. The gain-of-function PTEN variant, p.Gln97*, enhances osteogenic ability of PTEN in hDPs.


Assuntos
Adipogenia , Células-Tronco Mesenquimais , Humanos , Adipogenia/genética , Diferenciação Celular/genética , Tecido Adiposo , Osteogênese/genética , Polpa Dentária , Células-Tronco Mesenquimais/metabolismo , Proliferação de Células/genética , Células Cultivadas , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/farmacologia
7.
Int Endod J ; 56(3): 369-384, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36458950

RESUMO

AIM: Tideglusib is a small molecule agonist of the canonical Wnt pathway. The present study investigated the influence of Tideglusib on human dental pulp stem cell (hDPSC) proliferation, apoptosis, migration and odonto/osteogenic differentiation. METHODOLOGY: hDPSCs were treated with 50, 100 nM or 200 nM Tideglusib. ß-catenin accumulation was detected by immunofluorescence staining. Colony-forming unit ability was assessed by staining with Coomassie blue. Cell cycle progression and cell apoptosis were investigated using flow cytometry. Cell migration was examined using an in vitro wound-healing assay. Osteogenic differentiation was examined using alkaline phosphatase (ALP) staining, alizarin red S staining and osteogenic-related gene expression. The gene expression profile was examined using a high-throughput RNA sequencing technique. All experiments were repeated using cells derived from at least four different donors (n = 4). The Mann-Whitney U-test was used to identify significant differences between two independent group comparisons. For three or more group comparisons, statistical differences were assessed using the Kruskal-Wallis test followed by pairwise comparison. The significance level was set at 5% (p < .05). RESULTS: Tideglusib activated the Wnt signalling pathway in hDPSCs as demonstrated by an increase in cytoplasmic ß-catenin accumulation and nuclear translocation. Tideglusib did not affect hDPSC proliferation, cell cycle progression, cell apoptosis or cell migration. In contrast, 50 and 100 nM Tideglusib significantly enhanced mineralization and osteogenic marker gene expression (RUNX2, ALP, BMP2 and DSPP; p < .05). CONCLUSIONS: Tideglusib enhanced the odonto/osteogenic differentiation of hDPSCs. Therefore, incorporating this bioactive molecule in a pulp-capping material could be a promising strategy to promote dentine repair.


Assuntos
Polpa Dentária , Osteogênese , Humanos , beta Catenina/metabolismo , Células-Tronco , Diferenciação Celular , Proliferação de Células , Células Cultivadas
8.
Int Endod J ; 56(4): 514-529, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36633501

RESUMO

AIM: To investigate the effect of Wnt3a on odonto/osteogenic differentiation of stem cells isolated from human exfoliated deciduous teeth (SHEDs) and reparative dentine formation in a rat model. METHODOLOGY: Stem cells isolated from human exfoliated deciduous teeth were cultured in media with Wnt3a (50-200 ng/ml). Wnt activation was confirmed by ß-catenin immunocytochemistry. Colony-forming unit assay (normalized percentage area), osteogenic gene expression analysis by real-time polymerase chain reaction and mineralization assays measured by the absorption at 540 nm were performed. Tertiary dentine formation in vivo was evaluated using 8-week-old, male Wistar rats. Cavities with pinpoint pulp exposure by a sharp instrument were prepared at the mesial surface of the first molars. Teeth were divided into (n = 6): (1) distilled water (negative control), (2) phosphate-buffered saline (PBS), (3) lithium chloride in DI (20 µM), and (4) Wnt3a in PBS (200 ng/ml). Collagen sponge was used as a scaffold. The cavity was sealed with glass ionomer restoration. Four weeks later, animals were euthanized by sodium pentobarbital (120 mg/kg body weight). Hard tissue formation was evaluated using micro-computerized tomography. Sixty consecutive slides from the initial plane were analysed and calculated as bone/dentine volume per total tissue volume. Paraffin sections (2 µm) were stained with haematoxylin and eosin and Masson's trichrome for morphological evaluation. Data are presented as the mean ± standard error. Mann-Whitney U test was used for two-group comparison. Kruskal Wallis followed by pairwise comparison was employed for three or more group comparisons. Statistical analysis was performed using GraphPad Prism 7. Differences were considered significant at p < .05. RESULTS: Wnt3a decreased SHEDs colony formation and increased OSX, BMP2, and DMP1 expression, corresponding to an increase in mineralization. Additionally, a significant increase in dentine/bone volume per total tissue volume was observed in Wnt3a treated defects. Dentine bridge formation at the exposure sites treated with Wnt3a demonstrated, while fibrous tissues were observed in the control. CONCLUSIONS: Wnt3a suppressed proliferation, increased osteogenic differentiation of SHEDs and promotes tertiary dentine formation. Wnt3a could be utilized as biological molecule for vital pulp therapy.


Assuntos
Dentina Secundária , Osteogênese , Animais , Humanos , Masculino , Ratos , Diferenciação Celular/fisiologia , Dente Molar , Ratos Wistar , Proteína Wnt3A
9.
Clin Oral Investig ; 27(8): 4541-4552, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37261496

RESUMO

OBJECTIVES: Minipigs present advantages for studying oral bone regeneration; however, standardized critical size defects (CSD) for alveolar bone have not been validated yet. The objectives of this study are to develop a CSD in the mandibular alveolar bone in Aachen minipigs and to further investigate the specific role of periosteum. MATERIALS AND METHODS: Three female Aachen minipigs aged 17, 24, and 84 months were used. For each minipig, a split-mouth design was performed: an osteotomy (2 cm height × 2.5 cm length) was performed; the periosteum was preserved on the left side and removed on the right side. Macroscopic, cone beam computed tomography (CBCT), microcomputed tomography (µCT), and histological analyses were performed to evaluate the bone defects and bone healing. RESULTS: In both groups, spontaneous healing was insufficient to restore initial bone volume. The macroscopic pictures and the CBCT results showed a larger bone defect without periosteum. µCT results revealed that BMD, BV/TV, and Tb.Th were significantly lower without periosteum. The histological analyses showed (i) an increased osteoid apposition in the crestal area when periosteum was removed and (ii) an ossification process in the mandibular canal area in response to the surgical that seemed to increase when periosteum was removed. CONCLUSIONS: A robust model of CSD model was developed in the alveolar bone of minipigs that mimics human mandibular bone defects. This model allows to further investigate the bone healing process and potential factors impacting healing such as periosteum. CLINICAL RELEVANCE: This model may be relevant for testing different bone reconstruction strategies for preclinical investigations.


Assuntos
Regeneração Óssea , Periósteo , Animais , Feminino , Suínos , Humanos , Periósteo/cirurgia , Porco Miniatura , Projetos Piloto , Microtomografia por Raio-X , Regeneração Óssea/fisiologia , Mandíbula/diagnóstico por imagem , Mandíbula/cirurgia , Mandíbula/patologia
10.
J Periodontal Res ; 57(4): 742-753, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35510301

RESUMO

BACKGROUND: Mechanical stimuli induce the release of adenosine triphosphate into the extracellular environment by human periodontal ligament cells (hPDLCs). Extracellular adenosine triphosphate (eATP) plays the role in both inflammation and osteogenic differentiation. eATP involves in immunosuppressive action by increasing immunosuppressive molecules IDO and IFNγ expression on immune cells. However, the role of eATP on the immunomodulation of hPDLCs remains unclear. This study aimed to examine the effects of eATP on the IDO and IFNγ expression of hPDLCs and the participation of purinergic P2 receptors in this phenomenon. METHODS: hPDLCs were treated with eATP. The mRNA and protein expression of indoleamine-pyrrole 2,3-dioxygenase (IDO) and interferon-gamma (IFNγ) were determined. The role of the purinergic P2 receptor was determined using calcium chelator (EGTA) and PKC inhibitor (PKCi). Chemical inhibitors (KN62 and BBG), small interfering RNA (siRNA), and P2 X7 receptor agonist (BzATP) were used to confirm the involvement of P2 X7 receptors on IDO and IFNγ induction by hPDLCs. RESULTS: eATP significantly enhanced mRNA expression of IDO and IFNγ. Moreover, eATP increased kynurenine which is the active metabolite of tryptophan breakdown catalyzed by the IDO enzyme and significantly induced IFNγ protein expression. EGTA and PKCi reduced eATP-induced IDO and IFNγ expressions by hPDLCs, confirming the role of calcium signaling. Chemical P2 X7 inhibitors (KN62 and BBG) and siRNA targeting the P2 X7 receptor significantly inhibited the eATP-induced IDO and IFNγ production. Correspondingly, BzATP markedly increased IDO and IFNγ expression. CONCLUSION: eATP induced immunosuppressive function of hPDLCs by promoting IDO and IFNγ production via P2 X7 receptor signaling. eATP may become a promising target for periodontal regeneration by modulating immune response and further triggering tissue healing.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase , Interferon gama , Ligamento Periodontal , Receptores Purinérgicos P2X7 , Trifosfato de Adenosina/farmacologia , Células Cultivadas , Ácido Egtázico/farmacologia , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interferon gama/metabolismo , Osteogênese , RNA Mensageiro , RNA Interferente Pequeno , Receptores Purinérgicos P2X7/metabolismo
11.
Int J Mol Sci ; 23(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35955809

RESUMO

6-bromoindirubin-3'-oxime (BIO) is a candidate small molecule that effectively modulates Wnt signalling owing to its stable property. The present study investigated the influence of BIO on the odonto/osteogenic differentiation of human dental pulp stem cells (hDPSCs). hDPSCs were treated with 200, 400, or 800 nM BIO, and the effects on hDPSC responses and osteogenic differentiation were assessed. BIO-mediated Wnt activation was confirmed by ß-catenin nuclear translocation detected by immunofluorescence staining. BIO attenuated colony formation and cell migration determined by in vitro wound-healing assay. BIO increased early apoptotic cell population evaluated using flow cytometry. For osteogenic induction, BIO promoted alkaline phosphatase (ALP) activity and mineralisation in a dose-dependent manner. ALP, RUNX2, OCN, OSX, ANKH, DMP1, and DSPP mRNA expression were significantly upregulated. The OPG/RANKL expression ratio was also increased. Further, BIO attenuated adipogenic differentiation as demonstrated by decreased lipid accumulation and adipogenic-related gene expression. Bioinformatic analysis of RNA sequencing data from the BIO-treated hDPSCs revealed that BIO modulated pathways related to autophagy and actin cytoskeleton regulation. These findings demonstrated that BIO treatment promoted hDPSC osteogenic differentiation. Therefore, this small molecule is a strong candidate as a bioactive molecule to enhance dentin repair.


Assuntos
Osteogênese , Células-Tronco , Apoptose , Diferenciação Celular/genética , Proliferação de Células , Células Cultivadas , Polpa Dentária , Humanos , Indóis , Osteogênese/genética , Oximas , Células-Tronco/metabolismo
12.
Int J Mol Sci ; 23(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35806124

RESUMO

Relevant immunomodulatory effects have been proposed following allogeneic cell-based therapy with human periodontal ligament stem cells (hPDLSCs). This study aimed to examine the influence of shear stress on the immunosuppressive capacity of hPDLSCs. Cells were subjected to shear stress at different magnitudes (0.5, 5 and 10 dyn/cm2). The expression of immunosuppressive markers was evaluated in shear stress-induced hPDLSCs using qRT-PCR, western blot, enzyme activity and enzyme-linked immunosorbent assays. The effects of a shear stress-derived condition medium (SS-CM) on T cell proliferation were examined using a resazurin assay. Treg differentiation was investigated using qRT-PCR and flow cytometry analysis. Our results revealed that shear stress increased mRNA expression of IDO and COX2 but not TGF-ß1 and IFN-γ. IDO activity, kynurenine and active TGF-ß1 increased in SS-CM when compared to the non-shear stress-derived conditioned medium (CTL-CM). The amount of kynurenine in SS-CM was reduced in the presence of cycloheximide and ERK inhibitor. Subsequently, T cell proliferation decreased in SS-CM compared to CTL-CM. Treg differentiation was promoted in SS-CM, indicated by FOXP3, IL-10 expression and CD4+CD25hiCD127lo/- subpopulation. In conclusion, shear stress promotes kynurenine production through ERK signalling in hPDLSC, leading to the inhibition of T cell proliferation and the promotion of Treg cell differentiation.


Assuntos
Cinurenina , Ligamento Periodontal , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Cinurenina/metabolismo , Osteogênese , Células-Tronco/metabolismo
13.
Int J Mol Sci ; 23(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36430375

RESUMO

The indirect immobilisation of Jagged-1 (Jagged-1) promoted osteogenic differentiation of human dental pulp cells (hDPs). Furthermore, the analysis of the Reactome pathway of RNA sequencing data indicates the upregulated genes involved with the extracellular matrix (ECM). Hence, our objective was to investigate the effects of Jagged-1 on proteomic profiles of human dental pulp stem cells (hDPSC). hDPSCs were cultured on the surface coated with human IgG Fc fragment (hFc) and the surface coated with rhJagged1/Fc recombinant protein-coated surface. Cells were differentiated to the osteogenic lineage using an osteogenic differentiation medium (OM) for 14 days, and cells cultured in a growth medium were used as a control. The protein component of the cultured cells was extracted into the cytosol, membrane, nucleus, and cytoskeletal compartment. Subsequently, the proteomic analysis was performed using liquid chromatography-tandem mass spectrometry (LC-MS). Metascape gene list analysis reported that Jagged-1 stimulated the expression of the membrane trafficking protein (DOP1B), which can indirectly improve osteogenic differentiation. hDPSCs cultured on Jagged-1 surface under OM condition expressed COL27A1, MXRA5, COL7A1, and MMP16, which played an important role in osteogenic differentiation. Furthermore, common matrisome proteins of all cellular components were related to osteogenesis/osteogenic differentiation. Additionally, the gene ontology categorised by the biological process of cytosol, membrane, and cytoskeleton compartments was associated with the biomineralisation process. The gene ontology of different culture conditions in each cellular component showed several unique gene ontologies. Remarkably, the Jagged-1_OM culture condition showed the biological process related to odontogenesis in the membrane compartment. In conclusion, the Jagged-1 induces osteogenic differentiation could, mainly through the regulation of protein in the membrane compartment.


Assuntos
Osteogênese , Proteômica , Humanos , Colágeno Tipo VII/metabolismo , Polpa Dentária/metabolismo , Matriz Extracelular/metabolismo , Colágenos Fibrilares/metabolismo , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Células-Tronco/metabolismo
14.
Int J Mol Sci ; 23(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36012128

RESUMO

Notch signaling is associated with many human malignancies, including oral squamous cell carcinoma (OSCC). However, the exact function of Notch signaling in OSCC remains unclear. Here, we investigated the effect of Notch signaling inhibition using a γ-secretase inhibitor (DAPT) on OSCC behaviours in vitro. Bioinformatic analysis of public-available gene expression profiles revealed the dysregulation of the Notch signaling pathway in OSCC compared with normal tissues, indicating the role of Notch signaling in OSCC regulation. RNA sequencing analysis of DAPT-treated human OSCC cells revealed the dysregulation of genes related to cell cycle-related pathways. Blocking Notch signaling significantly inhibited cell proliferation. DAPT-induced G0/G1 cell cycle arrest induced cell apoptosis. Furthermore, cell migration and invasion were also reduced in DAPT-treated cells. These findings indicate that Notch signaling activation participates in OSCC regulation by promoting cell growth, cell cycle progression, cell migration, and invasion. These mechanisms could facilitate OSCC progression. These results imply the potential use of Notch signaling inhibitors as a candidate adjuvant treatment in OSCC patients.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Secretases da Proteína Precursora do Amiloide/metabolismo , Apoptose , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Humanos , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Inibidores da Agregação Plaquetária/farmacologia , Carcinoma de Células Escamosas de Cabeça e Pescoço
15.
Int Endod J ; 54(12): 2229-2242, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34455605

RESUMO

AIM: To investigate whether TGF-ß/BMP signalling participates in Jagged1-induced osteogenic differentiation in human dental pulp cells (hDPs). METHODOLOGY: Bioinformatic analysis of publicly available RNA sequencing data of Jagged1-treated hDPs was performed using NetworkAnalyst. The mRNA expression was validated using real-time polymerase chain reaction. hDPs were seeded on Jagged1 immobilized surfaces in the presence or absence of TGF-ß or BMP inhibitor. Osteogenic differentiation was evaluated using alkaline phosphatase staining, osteogenic marker gene expression and mineralization assay. Statistical analyses were performed using a Kruskal-Wallis test, followed by a pairwise comparison for more than three group comparison. Mann-Whitney U-test was employed for two group comparison. The statistical significance was considered at p < .05. RESULTS: Jagged1 treatment in growth medium significantly promoted TGFB1, TGFB2 and TGFB3 whilst significantly inhibited BMP2, BMP4 and BMP6 mRNA expression (p < .05). In osteogenic induction medium, Jagged1 significantly up-regulated TGFB1, TGFB2 and TGFB3 at days 1 and 3 (p < .05). Pre-treatment with TGF-ß1, TGF-ß2 or TGF-ß3 prior to osteogenic induction resulted in the significant increase of osteogenic marker gene expression, collagen type 1 protein expression, alkaline phosphatase enzymatic activity and mineral deposition (p < .05). However, TGF-ß signalling inhibition with SB431542 (4 µmol L-1 ) or SB505124 (47 and 129 nmol L-1 ) failed to attenuate the effect of Jagged1-induced osteogenic differentiation in hDPs. Dorsomorphin (4 and 8 µmol L-1 ) treatment significantly abolished the effect of Jagged1 on mineralization by hDPs (p < .05). CONCLUSION: Notch signalling activation by Jagged1 modulated TGF-ß and BMP ligand expression. Dorsomorphin, but not TGF-ß receptor inhibitor, attenuated Jagged1-induced osteogenic differentiation in hDPs.


Assuntos
Polpa Dentária , Proteína Jagged-1 , Osteogênese , Fosfatase Alcalina , Diferenciação Celular , Células Cultivadas , Humanos , Pirazóis , Pirimidinas
16.
BMC Oral Health ; 21(1): 209, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33902558

RESUMO

BACKGROUND: Direct pulp capping is a vital pulp therapy for a pin-point dental pulp exposure. Applying a pulp capping material leads to the formation of a dentin bridge and protects pulp vitality. The aim of this study was to compare the effects of four dental materials, DyCal®, ProRoot® MTA, Biodentine™, and TheraCal™ LC in vitro. METHODS: Human dental pulp stem cells (hDPs) were isolated and characterized. Extraction medium was prepared from the different pulp capping materials. The hDP cytotoxicity, proliferation, and migration were examined. The odonto/osteogenic differentiation was determined by alkaline phosphatase, Von Kossa, and alizarin red s staining. Osteogenic marker gene expression was evaluated using real-time polymerase chain reaction. RESULTS: ProRoot® MTA and Biodentine™ generated less cytotoxicity than DyCal® and TheraCal™ LC, which were highly toxic. The hDPs proliferated when cultured with the ProRoot® MTA and Biodentine™ extraction media. The ProRoot® MTA and Biodentine™ extraction medium induced greater cell attachment and spreading. Moreover, the hDPs cultured in the ProRoot® MTA or Biodentine™ extraction medium migrated in a similar manner to those in serum-free medium, while a marked reduction in cell migration was observed in the cells cultured in DyCal® and TheraCal™ LC extraction media. Improved mineralization was detected in hDPs maintained in ProRoot® MTA or Biodentine™ extraction medium compared with those in serum-free medium. CONCLUSION: This study demonstrates the favorable in vitro biocompatibility and bioactive properties of ProRoot® MTA and Biodentine™ on hDPs, suggesting their superior regenerative potential compared with DyCal® and TheraCal™.


Assuntos
Capeamento da Polpa Dentária , Agentes de Capeamento da Polpa Dentária e Pulpectomia , Compostos de Alumínio , Compostos de Cálcio , Polpa Dentária , Combinação de Medicamentos , Humanos , Osteogênese , Óxidos/farmacologia , Silicatos , Células-Tronco
17.
Biochem Biophys Res Commun ; 530(1): 222-229, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32828290

RESUMO

Efficiency of the induction protocol is crucial for the generation of insulin-producing cells (IPCs) from human dental pulp stem cells (hDPSCs). Here, we established the integrative induction protocol by merging genetic manipulation technique with our previous published 3-step induction protocol aiming to enhance the pancreatic progenitor commitment and production yield. We found that the overexpression of PDX1 following with 3-step induction protocol were able to generate the 3-dimensional (3D) colony structure of pancreatic progenitors (PPs) with the beneficial trends of pancreatic endoderm commitment and production yield, while other protocols using the prolong maintenance of PDX1-overexpressed hDPSCs and the PDX1 overexpression after definitive endoderm induction were unable to generate and sustain the 3D structure of the colonies. Further Notch signaling manipulation by DAPT treatment showed lesser degree of positive effects on progenitor commitment and production yield. Although the generated PPs from the integrative protocol expressed pancreatic mRNA markers along with pro-insulin and insulin proteins, they still contained the defective glucose-responsive C-peptide secretion. Only basal secreted C-peptide level was observed. In summary, the integrative induction protocol potentially enhanced the PP generation with high colony production yield and could serve as an efficient platform for further hDPSC-derived IPC production and maturation.


Assuntos
Células-Tronco Adultas/citologia , Polpa Dentária/citologia , Células Secretoras de Insulina/citologia , Pâncreas/citologia , Células-Tronco Adultas/metabolismo , Peptídeo C/metabolismo , Técnicas de Cultura de Células , Células Cultivadas , Polpa Dentária/metabolismo , Glucose/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Pâncreas/metabolismo , Transativadores/genética , Transativadores/metabolismo , Regulação para Cima
18.
Int J Mol Sci ; 21(2)2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31963264

RESUMO

Cell condensation and mechanical stimuli play roles in osteogenesis and chondrogenesis; thus, they are promising for facilitating self-organizing bone/cartilage tissue formation in vitro from induced pluripotent stem cells (iPSCs). Here, single mouse iPSCs were first seeded in micro-space culture plates to form 3-dimensional spheres. At day 12, iPSC spheres were subjected to shaking culture and maintained in osteogenic induction medium for 31 days (Os induction). In another condition, the osteogenic induction medium was replaced by chondrogenic induction medium at day 22 and maintained for a further 21 days (Os-Chon induction). Os induction produced robust mineralization and some cartilage-like tissue, which promoted expression of osteogenic and chondrogenic marker genes. In contrast, Os-Chon induction resulted in partial mineralization and a large area of cartilage tissue, with greatly increased expression of chondrogenic marker genes along with osterix and collagen 1a1. Os-Chon induction enhanced mesodermal lineage commitment with brachyury expression followed by high expression of lateral plate and paraxial mesoderm marker genes. These results suggest that combined use of micro-space culture and mechanical stimuli facilitates hybrid bone/cartilage tissue formation from iPSCs, and that the bone/cartilage tissue ratio in iPSC constructs could be manipulated through the induction protocol.


Assuntos
Cartilagem/química , Células-Tronco Pluripotentes Induzidas/citologia , Animais , Células Cultivadas , Colágeno/metabolismo , Proteínas Fetais/metabolismo , Camundongos , Osteogênese/genética , Osteogênese/fisiologia , Fator de Transcrição Sp7/genética , Fator de Transcrição Sp7/metabolismo , Proteínas com Domínio T/metabolismo
19.
Oral Dis ; 25(4): 1203-1213, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30776172

RESUMO

OBJECTIVE: Jagged1 regulates several biological functions in human periodontal ligament cells (hPDLs). The present study aimed to evaluate mRNA expression profiling of Jagged1-treated hPDLs using microarray technique. METHODS: Notch ligands, Jagged1, were indirectly immobilized on tissue culture surface. Subsequently, hPDLs were seeded on Jagged1 immobilized surface and maintained in growth medium for 48 hr. Total RNA was collected and processed. Gene expression profiling was examined using microarray technique. Real-time polymerase chain reaction and immunofluorescence staining were employed to determine mRNA and protein expression levels, respectively. Cell proliferation and colony-forming unit assay were performed. Cell cycle was evaluated using propidium iodide staining and flow cytometry analysis. RESULTS: The isolated cells demonstrated fibroblast-like morphology and exhibited the co-expression of CD44, CD90, and CD105 surface markers. After stimulated with Jagged1, the total of 411 genes was differentially expressed, consisting both coding and non-coding genes. For coding genes, 165 and 160 coding genes were upregulated and downregulated, respectively. Pathway analysis revealed that the upregulated genes were mainly involved in cellular interactions, signal transduction, and collagen formation and degradation while the downregulated genes were in the events and phases in cell cycle. Jagged1 significantly decreased cell proliferation, reduced colony-forming unit ability, and induced G0/G1 cell cycle arrest in hPDLs. CONCLUSION: Jagged1 regulates various biological pathways in hPDLs. This gene expression profiling could help to understand the mechanisms potentially involved in the Notch signaling regulation in periodontal homeostasis.


Assuntos
Perfilação da Expressão Gênica , Proteína Jagged-1/genética , Ligamento Periodontal , Transdução de Sinais , Células Cultivadas , Humanos , Proteína Jagged-1/metabolismo , Análise em Microsséries , RNA Mensageiro , Reação em Cadeia da Polimerase em Tempo Real
20.
Oral Dis ; 25(3): 812-821, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30614184

RESUMO

OBJECTIVES: Mechanical injury of dental pulp leads to root resorption by osteoclasts/odontoclasts. S100 proteins have been demonstrated to be involved in inflammatory processes and bone remodeling. This study aimed to investigate the effect of mechanical stress on S100A7 expression by human dental pulp cells (HDPCs) and the effect of S100A7 proteins on osteoclast differentiation. MATERIALS AND METHODS: Isolated HDPCs were stimulated with compressive loading (2 and 6 hr), or shear loading (2, 6, and 16 hr). S100 mRNA expression and S100A7 protein levels were determined by real-time PCR and ELISA, respectively. Osteoclast differentiation was analyzed using primary human monocytes. The differentiation and activity of osteoclasts were examined by TRAcP staining and dentine resorption. In addition, the expression of S100A7 was analyzed in pulp tissues obtained from orthodontically treated teeth. RESULTS: Compressive and shear mechanical stress significantly upregulated both mRNA and protein level of S100A7. Dental pulp tissues from orthodontically treated teeth exhibited higher S100A7mRNA levels compared to non-treated control teeth. S100A7 promoted osteoclast differentiation by primary human monocytes. Moreover, S100A7 significantly enhanced dentine resorption by these cells. CONCLUSIONS: Mechanical stress induced expression of S100A7 by human dental pulp cells and this may promote root resorption by inducing osteoclast differentiation and activity.


Assuntos
Diferenciação Celular , Polpa Dentária/metabolismo , Monócitos/fisiologia , Proteína A7 Ligante de Cálcio S100/genética , Proteína A7 Ligante de Cálcio S100/metabolismo , Estresse Mecânico , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular , Células Cultivadas , Polpa Dentária/citologia , Dentina/metabolismo , Humanos , Osteoclastos , RNA Mensageiro/metabolismo , Proteína A7 Ligante de Cálcio S100/farmacologia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA