Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioessays ; 43(10): e2100080, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34472126

RESUMO

The placozoan Trichoplax adhaerens is a tiny hairy plate and more simply organized than any other living metazoan. After its original description by F.E. Schulze in 1883, it attracted attention as a potential model for the ancestral state of metazoan organization, the "Urmetazoon". Trichoplax lacks any kind of symmetry, organs, nerve cells, muscle cells, basal lamina, and extracellular matrix. Furthermore, the placozoan genome is the smallest (not secondarily reduced) genome of all metazoan genomes. It harbors a remarkably rich diversity of genes and has been considered the best living surrogate for a metazoan ancestor genome. The phylum Placozoa presently harbors three formally described species, while several dozen "cryptic" species are yet awaiting their description. The phylogenetic position of placozoans has recently become a contested arena for modern phylogenetic analyses and view-driven claims. Trichoplax offers unique prospects for understanding the minimal requirements of metazoan animal organization and their corresponding malfunctions.


Assuntos
Placozoa , Animais , Evolução Biológica , Genoma , Filogenia , Placozoa/genética
2.
Bioessays ; 43(10): e2100083, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34490659

RESUMO

The placozoan Trichoplax adhaerens has been bridging gaps between research disciplines like no other animal. As outlined in part 1, placozoans have been subject of hot evolutionary debates and placozoans have challenged some fundamental evolutionary concepts. Here in part 2 we discuss the exceptional genetics of the phylum Placozoa and point out some challenging model system applications for the best known species, Trichoplax adhaerens.


Assuntos
Placozoa , Animais , Evolução Biológica , Planeta Terra , Filogenia , Placozoa/genética
3.
PLoS Biol ; 16(7): e2005359, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30063702

RESUMO

Placozoans are a phylum of nonbilaterian marine animals currently represented by a single described species, Trichoplax adhaerens, Schulze 1883. Placozoans arguably show the simplest animal morphology, which is identical among isolates collected worldwide, despite an apparently sizeable genetic diversity within the phylum. Here, we use a comparative genomics approach for a deeper appreciation of the structure and causes of the deeply diverging lineages in the Placozoa. We generated a high-quality draft genome of the genetic lineage H13 isolated from Hong Kong and compared it to the distantly related T. adhaerens. We uncovered substantial structural differences between the two genomes that point to a deep genomic separation and provide support that adaptation by gene duplication is likely a crucial mechanism in placozoan speciation. We further provide genetic evidence for reproductively isolated species and suggest a genus-level difference of H13 to T. adhaerens, justifying the designation of H13 as a new species, Hoilungia hongkongensis nov. gen., nov. spec., now the second described placozoan species and the first in a new genus. Our multilevel comparative genomics approach is, therefore, likely to prove valuable for species distinctions in other cryptic microscopic animal groups that lack diagnostic morphological characters, such as some nematodes, copepods, rotifers, or mites.


Assuntos
Genômica , Placozoa/genética , Alelos , Animais , Sequência de Bases , DNA Ribossômico/genética , Duplicação Gênica , Rearranjo Gênico/genética , Especiação Genética , Variação Genética , Genoma , Anotação de Sequência Molecular , Filogenia , Placozoa/ultraestrutura , Isolamento Reprodutivo
5.
Ecol Evol ; 14(4): e11220, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38606341

RESUMO

The marine animal phylum Placozoa is characterized by a poorly explored cryptic biodiversity combined with very limited knowledge of their ecology. While placozoans are typically found as part of the epibenthos of coastal waters, known placozoan predators, namely small, shell-less sea slugs belonging to the family Rhodopidae (Mollusca: Gastropoda: Heterobranchia), inhabit the interstitium of seafloor sediment. In order to gain further insights into this predator-prey relationship and to expand our understanding of placozoan ecological niches, we screened publicly available whole-body metagenomic data from two rhodopid specimens collected from coastal sediments. Our analysis not only revealed the signatures of three previously unknown placozoan lineages in these sea slug samples but also enabled the assembly of three complete and two partial mitochondrial chromosomes belonging to four previously described placozoan genera, substantially extending the picture of placozoan biodiversity. Our findings further refine the molecular phylogeny of the Placozoa, corroborate the recently established taxonomic ranks in this phylum, and provide molecular support that known placozoan clades should be referred to as genera. We finally discuss the main finding of our study - the presence of placozoans in the sea floor sediment interstitium - in the context of their ecological, biological, and natural history implications.

6.
Mol Phylogenet Evol ; 66(2): 551-7, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22683435

RESUMO

The ever-lingering question: "What did the urmetazoan look like?" has not lost its charm, appeal or elusiveness for one and a half centuries. A solid amount of organismal data give what some feel is a clear answer (e.g. Placozoa are at the base of the metazoan tree of life (ToL)), but a diversity of modern molecular data gives almost as many answers as there are exemplars, and even the largest molecular data sets could not solve the question and sometimes even suggest obvious zoological nonsense. Since the problems involved in this phylogenetic conundrum encompass a wide array of analytical freedom and uncertainty it seems questionable whether a further increase in molecular data (quantity) can solve this classical deep phylogeny problem. This review thus strikes a blow for evaluating quality data (including morphological, molecule morphologies, gene arrangement, and gene loss versus gene gain data) in an appropriate manner.


Assuntos
Evolução Biológica , Filogenia , Animais , Placozoa/anatomia & histologia , Placozoa/classificação , Placozoa/genética
7.
Mol Phylogenet Evol ; 69(2): 339-51, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23891951

RESUMO

Unraveling the base of metazoan evolution is of crucial importance for rooting the metazoan Tree of Life. This subject has attracted substantial attention for more than a century and recently fueled a burst of modern phylogenetic studies. Conflicting scenarios from different studies and incongruent results from nuclear versus mitochondrial markers challenge current molecular phylogenetic approaches. Here we analyze the presently most comprehensive data sets of mitochondrial genomes from non-bilaterian animals to illuminate the phylogenetic relationships among early branching metazoan phyla. The results of our analyses illustrate the value of mitogenomics and support previously known topologies between animal phyla but also identify several problematic taxa, which are sensitive to long branch artifacts or missing data.


Assuntos
Evolução Molecular , Genoma Mitocondrial , Filogenia , Animais , Cnidários/classificação , Ctenóforos/classificação , Modelos Genéticos , Placozoa/classificação , Poríferos/classificação , Análise de Sequência de DNA
8.
PLoS Biol ; 7(1): e20, 2009 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-19175291

RESUMO

For more than a century, the origin of metazoan animals has been debated. One aspect of this debate has been centered on what the hypothetical "urmetazoon" bauplan might have been. The morphologically most simply organized metazoan animal, the placozoan Trichoplax adhaerens, resembles an intriguing model for one of several "urmetazoon" hypotheses: the placula hypothesis. Clear support for a basal position of Placozoa would aid in resolving several key issues of metazoan-specific inventions (including, for example, head-foot axis, symmetry, and coelom) and would determine a root for unraveling their evolution. Unfortunately, the phylogenetic relationships at the base of Metazoa have been controversial because of conflicting phylogenetic scenarios generated while addressing the question. Here, we analyze the sum of morphological evidence, the secondary structure of mitochondrial ribosomal genes, and molecular sequence data from mitochondrial and nuclear genes that amass over 9,400 phylogenetically informative characters from 24 to 73 taxa. Together with mitochondrial DNA genome structure and sequence analyses and Hox-like gene expression patterns, these data (1) provide evidence that Placozoa are basal relative to all other diploblast phyla and (2) spark a modernized "urmetazoon" hypothesis.


Assuntos
Evolução Molecular , Filogenia , Placozoa/anatomia & histologia , Placozoa/fisiologia , Animais , Padronização Corporal , DNA Mitocondrial/química , DNA Ribossômico/química , Expressão Gênica , Genoma Mitocondrial , Placozoa/classificação , RNA Ribossômico 18S , Análise de Sequência de DNA
9.
Methods Mol Biol ; 2450: 121-133, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359305

RESUMO

Placozoans are a promising model system to study fundamental regeneration processes in a morphologically and genetically very simple animal. We here provide a brief introduction to the enigmatic Placozoa and summarize the state of the art of animal handling and experimental manipulation possibilities.


Assuntos
Placozoa , Animais , Placozoa/genética
10.
Mitochondrial DNA B Resour ; 6(3): 808-810, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33796648

RESUMO

Pantala flavescens is the world's most abundant and widely distributed dragonfly and with its outstanding migratory capacity an important model system to study insect migration at the evolutionary base of winged insects. We here report on the first complete mitochondrial genome (mitogenome) of P. flavescens sampled from a population in Rufiji River, Tanzania. The mitogenome is 14,853 bp long with an AT-biased base composition (72.7% A + T) and encodes a typical set of 13 protein-coding genes (PCGs), 22 tRNAs, and two rRNAs. The control region (CR) (171 bp) is the shortest reported in any anisopteran odonate, so far. Phylogenetic analyses support the placement of P. flavescens within the Libellulidae.

11.
Genome Biol Evol ; 13(1)2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33031489

RESUMO

Placozoans, nonbilaterian animals with the simplest known metazoan bauplan, are currently classified into 20 haplotypes belonging to three genera, Polyplacotoma, Trichoplax, and Hoilungia. The latter two comprise two and five clades, respectively. In Trichoplax and Hoilungia, previous studies on six haplotypes belonging to four different clades have shown that their mtDNAs are circular chromosomes of 32-43 kb in size, which encode 12 protein-coding genes, 24 tRNAs, and two rRNAs. These mitochondrial genomes (mitogenomes) also show unique features rarely seen in other metazoans, including open reading frames (ORFs) of unknown function, and group I and II introns. Here, we report seven new mitogenomes, covering the five previously described haplotypes H2, H17, H19, H9, and H11, as well as two new haplotypes, H23 (clade III) and H24 (clade VII). The overall gene content is shared between all placozoan mitochondrial genomes, but genome sizes, gene orders, and several exon-intron boundaries vary among clades. Phylogenomic analyses strongly support a tree topology different from previous 16S rRNA analyses, with clade VI as the sister group to all other Hoilungia clades. We found small inverted repeats in all 13 mitochondrial genomes of the Trichoplax and Hoilungia genera and evaluated their distribution patterns among haplotypes. Because Polyplacotoma mediterranea (H0), the sister to the remaining haplotypes, has a small mitochondrial genome with few small inverted repeats and ORFs, we hypothesized that the proliferation of inverted repeats and ORFs substantially contributed to the observed increase in the size and GC content of the Trichoplax and Hoilungia mitochondrial genomes.


Assuntos
Evolução Molecular , Rearranjo Gênico , Genoma Mitocondrial , Mitocôndrias/genética , Placozoa/genética , Animais , DNA Mitocondrial/genética , Éxons , Ordem dos Genes , Haplótipos , Íntrons , Filogenia , RNA Ribossômico , RNA Ribossômico 16S , RNA de Transferência
12.
Sci Adv ; 6(40)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32998881

RESUMO

In metazoans, Bcl-2 family proteins are major regulators of mitochondrially mediated apoptosis; however, their evolution remains poorly understood. Here, we describe the molecular characterization of the four members of the Bcl-2 family in the most primitive metazoan, Trichoplax adhaerens All four trBcl-2 homologs are multimotif Bcl-2 group, with trBcl-2L1 and trBcl-2L2 being highly divergent antiapoptotic Bcl-2 members, whereas trBcl-2L3 and trBcl-2L4 are homologs of proapoptotic Bax and Bak, respectively. trBax expression permeabilizes the mitochondrial outer membrane, while trBak operates as a BH3-only sensitizer repressing antiapoptotic activities of trBcl-2L1 and trBcl-2L2. The crystal structure of a trBcl-2L2:trBak BH3 complex reveals that trBcl-2L2 uses the canonical Bcl-2 ligand binding groove to sequester trBak BH3, indicating that the structural basis for apoptosis control is conserved from T. adhaerens to mammals. Finally, we demonstrate that both trBax and trBak BH3 peptides bind selectively to human Bcl-2 homologs to sensitize cancer cells to chemotherapy treatment.


Assuntos
Apoptose , Proteína Killer-Antagonista Homóloga a bcl-2 , Animais , Humanos , Mamíferos/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/química , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo
13.
Curr Biol ; 29(5): R148-R149, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30836080

RESUMO

The enigmatic phylum Placozoa is harboring an unknown number of cryptic species and has become a challenge for modern systematics. Only recently, a second species has been described [1], while the presence of more than a hundred additional species has been suggested [2]. The original placozoan species Trichoplax adhaerens[3], the second species Hoilungia hongkongensis[1] and all yet undescribed species are morphologically indistinguishable (i.e. no species diagnostic characters are available [4]). Here, we report on a new placozoan species, Polyplacotoma mediterranea gen. nov., spec. nov., which differs from other placozoans in its completely different morphological habitus, including long polytomous body branches and a maximum body length of more than 10 mm. Polyplacotoma mediterranea also necessitates a different view of placozoan mitochondrial genetics. P. mediterranea harbors a highly compact mitochondrial genome with overlapping mitochondrial tRNA and protein coding genes. Furthermore, the new species lacks typical placozoan features, including the cox1 micro exon and cox1 barcode intron. As phylogenetic analyses suggest a sister group relationship of P. mediterranea to all other placozoans, this new species may also be relevant for studies addressing the relationships at the base of the metazoan tree of life.


Assuntos
Genoma Mitocondrial , Filogenia , Placozoa/classificação , Animais , Itália , Placozoa/citologia , Placozoa/ultraestrutura
14.
Sci Rep ; 9(1): 17561, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31772223

RESUMO

Symbiotic relationships between eukaryotic hosts and bacteria range from parasitism to mutualism and may deeply influence both partners' fitness. The presence of intracellular bacteria in the metazoan phylum Placozoa has been reported several times, but without any knowledge about the nature of this relationship and possible implications for the placozoan holobiont. This information may be of crucial significance since little is known about placozoan ecology and how different species adapt to different environmental conditions, despite being almost invariable at the morphological level. We here report on the novel genome of the rickettsial endosymbiont of Trichoplax sp. H2 (strain "Panama"). The combination of eliminated and retained metabolic pathways of the bacterium indicates a potential for a mutualistic as well as for a parasitic relationship, whose outcome could depend on the environmental context. In particular we show that the endosymbiont is dependent on the host for growth and reproduction and that the latter could benefit from a supply with essential amino acids and important cofactors. These findings call for further studies to clarify the actual benefit for the placozoan host and to investigate a possible role of the endosymbiont for ecological separation between placozoan species.


Assuntos
Placozoa/genética , Rickettsia/genética , Simbiose/genética , Aminoácidos/biossíntese , Animais , Evolução Molecular , Genoma/genética , Genoma Bacteriano/genética , Redes e Vias Metabólicas/genética , Filogenia , Placozoa/microbiologia , Placozoa/fisiologia , Rickettsia/fisiologia
15.
Sci Rep ; 8(1): 11168, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-30042472

RESUMO

The phylum Placozoa officially consists of only a single described species, Trichoplax adhaerens, although several lineages can be separated by molecular markers, geographical distributions and environmental demands. The placozoan 16S haplotype H2 (Trichoplax sp. H2) is the most robust and cosmopolitan lineage of placozoans found to date. In this study, its genome was found to be distinct but highly related to the Trichoplax adhaerens reference genome, for remarkably unique reasons. The pattern of variation and allele distribution between the two lineages suggests that both originate from a single interbreeding event in the wild, dating back at least several decades ago, and both seem not to have engaged in sexual reproduction since. We conclude that populations of certain placozoan haplotypes remain stable for long periods without bisexual reproduction. Furthermore, allelic variation within and between the two Trichoplax lineages indicates that successful bisexual reproduction between related placozoan lineages might serve to either counter accumulated negative somatic mutations or to cope with changing environmental conditions. On the other hand, enrichment of neutral or beneficial somatic mutations by vegetative reproduction, combined with rare sexual reproduction, could instantaneously boost genetic variation, generating novel ecotypes and eventually species.


Assuntos
Animais Selvagens/genética , Loci Gênicos/genética , Placozoa/classificação , Placozoa/genética , Dinâmica Populacional , Reprodução Assexuada/genética , Adaptação Biológica/genética , Animais , Ecótipo , Frequência do Gene , Haplótipos/genética , Mutação/genética , Nucleotídeos/genética , Filogenia , Polimorfismo de Nucleotídeo Único , População/genética , Sequências Repetitivas de Ácido Nucleico/genética , Seleção Genética/genética , Sintenia/genética
16.
PLoS One ; 12(5): e0177959, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542197

RESUMO

The phylum Placozoa holds a key position for our understanding of the evolution of mitochondrial genomes in Metazoa. Placozoans possess large mitochondrial genomes which harbor several remarkable characteristics such as a fragmented cox1 gene and trans-splicing cox1 introns. A previous study also suggested the existence of cox1 mRNA editing in Trichoplax adhaerens, yet the only formally described species in the phylum Placozoa. We have analyzed RNA-seq data of the undescribed sister species, Placozoa sp. H2 ("Panama" clone), with special focus on the mitochondrial mRNA. While we did not find support for a previously postulated cox1 mRNA editing mechanism, we surprisingly found two independent transcripts representing intermediate cox1 mRNA splicing stages. Both transcripts consist of partial cox1 exon as well as overlapping intron fragments. The data suggest that the cox1 gene harbors a single base pair (cytosine) micro exon. Furthermore, conserved group I intron structures flank this unique micro exon also in other placozoans. We discuss the evolutionary origin of this micro exon in the context of a self-splicing intron gain in the cox1 gene of the last common ancestor of extant placozoans.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/genética , Éxons/genética , Placozoa/genética , RNA Mensageiro/metabolismo , Animais , Pareamento de Bases , Sequência de Bases , Genoma Mitocondrial , Sequenciamento de Nucleotídeos em Larga Escala , Mitocôndrias/enzimologia , Mitocôndrias/genética , Placozoa/enzimologia , Splicing de RNA , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mitocondrial , Alinhamento de Sequência , Análise de Sequência de RNA
17.
Ecol Evol ; 7(3): 895-904, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28168026

RESUMO

The increase in atmospheric carbon dioxide (CO2) leads to rising temperatures and acidification in the oceans, which directly or indirectly affects all marine organisms, from bacteria to animals. We here ask whether the simplest-and possibly also the oldest-metazoan animals, the placozoans, are particularly sensitive to ocean warming and acidification. Placozoans are found in all warm and temperate oceans and are soft-bodied, microscopic invertebrates lacking any calcified structures, organs, or symmetry. We here show that placozoans respond highly sensitive to temperature and acidity stress. The data reveal differential responses in different placozoan lineages and encourage efforts to develop placozoans as a potential biomarker system.

18.
Mitochondrial DNA B Resour ; 1(1): 497-499, 2016 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-33473533

RESUMO

Odonata (dragonflies and damselflies) is a small order at the base of flying insects (Pterygota). Resolving family-level phylogenetic relationships within this order receives great attention. Hereby, genetic data already resulted in various changes, which are however still under discussion. Mitochondrial genomes may further enhance such phylogenies. This study presents the complete mitochondrial genome of the Neotropical damselfly Megaloprepus caerulatus based on next generation sequencing (NGS) data on total genomic DNA. The total length comprises 16,094 bp and includes the standard metazoan set of 37 genes together with a 1376 bp long A + T rich (control) region. Gene content, gene arrangement and base frequency are consistent with other odonate mitochondrial genomes. It further contains four intergenic spacer regions, indicating a possible family specific feature for the Coenagrionidae and its close relatives.

19.
Mitochondrial DNA B Resour ; 1(1): 574-576, 2016 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-33473559

RESUMO

Damselflies of the genus Ischnura emerge as organisms with high potential in ecological, evolutionary and developmental research at the base of flying insects. Ischnura elegans and Ischnura hastata are for example one of the few odonate species where a complete life cycle over generations can be reared under laboratory conditions. We here report the complete mitochondrial genome of Ischnura elegans as a valuable genomic resource for future eco-evo-devo studies at the base of flying insects. The genome has a total length of 15,962 bp and displays all typical features of Odonata (dragonflies and damselflies) mitochondrial genomes in gene content and order as well as A + T content. Start and stop codons of all protein-coding genes are consistent. Most interestingly, we found four intergenic spacer regions and a long A + T rich (control) region of 1196 bp, which is almost double the size of the close relative Ischnura pumilio. We assume that the adequate insert size and iterative mapping may be more efficient in assembling this duplicated and repetitive region.

20.
Mitochondrial DNA B Resour ; 1(1): 783-786, 2016 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33473626

RESUMO

Here we report the complete mitochondrial genome of the emperor dragonfly, Anax imperator (Odonata: Aeshnidae) as the first of its genus. Data were generated via next generation sequencing (NGS) and assembled using an iterative approach. The typical metazoan set of 37 genes (13 protein-coding genes, 22 tRNA genes, and 2 rRNA genes) was detected in the same gene order as in other odonate mitogenomes. However, only three intergenic spacer regions are present in A. imperator lacking the distinct s5 spacer, which was regarded as informative feature of the odonate suborder Anisoptera (dragonflies) but absent in Zygoptera (damselflies). With 16,087 bp, it is the longest anisopteran mitogenome to date, mainly due to the long A + T-rich control region of 1291 bp.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA