Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Faraday Discuss ; 236(0): 374-388, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35506395

RESUMO

In many engineering scenarios, surface-active organic species are added to acidic solutions to inhibit the corrosion of metallic components. Given suitable selection, such corrosion inhibitors are highly effective, preventing significant degradation even in highly aggressive environments. Nevertheless, there are still considerable gaps in fundamental knowledge of corrosion inhibitor functionality, severely restricting rational development. Here, we demonstrate the capability of X-ray photoelectron spectroscopy (XPS), supported by ab initio modelling, for revealing key details of inhibited substrates. Attention is focussed on the corrosion inhibition of carbon steel through the addition of an exemplar imidazoline-based corrosion inhibitor (OMID) to aqueous solutions of both HCl and H2SO4. Most notably, it is demonstrated that interfacial chemistry varies with the identity of the acid. High resolution Fe 2p, O 1s, N 1s, and Cl 2p XPS spectra, acquired from well-inhibited carbon steel in 1 M HCl, show that there are two different singly protonated OMID species bound directly to the metallic carbon steel substrate. In sharp contrast, in 0.01 M H2SO4, OMID adsorbs onto an ultra-thin surface film, composed primarily of a ferric sulfate (Fe2(SO4)3)-like phase. Such insight is essential to efforts to develop a mechanistic description of corrosion inhibitor functionality, as well as knowledge-based identification of next generation corrosion inhibitors.

2.
J Colloid Interface Sci ; 511: 84-91, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28988009

RESUMO

Carbon dioxide is commonly used as pH regulator in switchable surfactant systems and in the formation of alkyl ammonium-alkyl carbamate ion-pair. Its use to form a meta-stable anionic surfactant has been less explored and can impart a cleavable character to the amphiphile. The reaction between CO2 and an alkylamine, N,N-di(propylamino)dodecylamine (Y12-amine), under alkaline pH conditions, produced a stable anionic carbamate-based surfactant (Y12-carbamate). By heating and exposure to N2, anionic Y12-carbamate could slowly be reverted into Y12-amine. The surface activity of Y12-amine and Y12-carbamate was investigated by surface tension measurements. To study the behavior of Y12-amine at the gas-water interface during CO2 exposure, we used the pendant drop technique with a sealed chamber where the gas composition could be controlled. The Y12-carbamate had a higher CMC than Y12-amine at pH 12, and was also less surface active. The ion pair Y12-ammonium - Y12-carbamate, obtained at neutral pH, exhibited the lowest CMC and the highest surface activity. The interfacial formation of anionic Y12-carbamate induced an increase in surface tension. When CO2 was exchanged to N2, the migration from the bulk to the interface of Y12-amine induced a decrease in surface tension. The rate was dependent on the concentration of Y12-amine.

3.
J Am Chem Soc ; 125(12): 3631-41, 2003 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-12643726

RESUMO

Alkyl-N-iminodiacetic acids with varying alkyl chain lengths have been prepared and characterized with respect to structure, acidic properties, and ability to form aggregates in water. The alkyl-N-iminodiacetic acids are the group of ligands with the lowest molecule weight which can be characterized as chelating surfactants, compounds with surface chemical properties which at the same time have a high ability to bind metal ions. The solid alkyl-N-iminodiacetic acids have a unique structure with neutral zwitterionic units linked together to polymer chains through a short strong hydrogen bond, d(O(-H)...O) approximately 2.46 A, and where the nu(O-H) stretching vibration at ca. 720 cm(-1) supports the presence of such a hydrogen bond. The polymer chains are cross-linked together to bilayers through relatively strong hydrogen bonds between ammonium and carboxylate groups, and where the parallel alkyl groups are interdigitating each other; the bilayer surface consists of hydrophilic iminodiacetic acid groups. The acidic properties of monomeric alkyl-N-iminodiacetic acids in water are in the expected ranges with pK(a) values of about 1.7, 2.3, and 10.3. n-Octadecyl-N-iminodiacetic acid, present as aggregates in water, displays very acidic properties of the first proton, and a substantially weakened acidity of the second proton, pK(a2) = 5.5-7.5, depending on ionic strength, and pK(a3) = 9.5-10.5. This pattern of the acidic constants strongly indicates that the polymer structure with short strong hydrogen bonds is maintained in the aggregates and that such bonds can exist in aqueous systems if they are supported by a strong and rigid backbone structure, as the bilayers of well-organized long interdigitating alkyl chains in the studied systems. Hydrogenbis(methyl-N-iminodiacetic acid) perchlorate precipitates from perchloric acidic solutions of methyl-N-iminodiacetic acid. The structure is built up of dimers of zwitterionic methyl-N-iminodiacetic acid units linked together by an extra proton in a short strong hydrogen bond, d(O(-H)...O) approximately 2.456(6) A, and nu(O-H) = 789 cm(-1).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA