Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(15): 7419-7424, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30910980

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease in which genetic risk has been mapped to HLA, but precise allelic associations have been difficult to infer due to limitations in genotyping methodology. Mapping PD risk at highest possible resolution, we performed sequencing of 11 HLA genes in 1,597 PD cases and 1,606 controls. We found that susceptibility to PD can be explained by a specific combination of amino acids at positions 70-74 on the HLA-DRB1 molecule. Previously identified as the primary risk factor in rheumatoid arthritis and referred to as the "shared epitope" (SE), the residues Q/R-K/R-R-A-A at positions 70-74 in combination with valine at position 11 (11-V) is highly protective in PD, while risk is attributable to the identical epitope in the absence of 11-V. Notably, these effects are modified by history of cigarette smoking, with a strong protective effect mediated by a positive history of smoking in combination with the SE and 11-V (P = 10-4; odds ratio, 0.51; 95% confidence interval, 0.36-0.72) and risk attributable to never smoking in combination with the SE without 11-V (P = 0.01; odds ratio, 1.51; 95% confidence interval, 1.08-2.12). The association of specific combinations of amino acids that participate in critical peptide-binding pockets of the HLA class II molecule implicates antigen presentation in PD pathogenesis and provides further support for genetic control of neuroinflammation in disease. The interaction of HLA-DRB1 with smoking history in disease predisposition, along with predicted patterns of peptide binding to HLA, provide a molecular model that explains the unique epidemiology of smoking in PD.


Assuntos
Genótipo , Cadeias HLA-DRB1/química , Cadeias HLA-DRB1/genética , Modelos Moleculares , Doença de Parkinson/genética , Fumar/genética , Motivos de Aminoácidos , Feminino , Técnicas de Genotipagem , Humanos , Masculino , Fatores de Risco
2.
Genes Immun ; 20(4): 308-326, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29307888

RESUMO

We investigated association between HLA class I and class II alleles and haplotypes, and KIR loci and their HLA class I ligands, with multiple sclerosis (MS) in 412 European American MS patients and 419 ethnically matched controls, using next-generation sequencing. The DRB1*15:01~DQB1*06:02 haplotype was highly predisposing (odds ratio (OR) = 3.98; 95% confidence interval (CI) = 3-5.31; p-value (p) = 2.22E-16), as was DRB1*03:01~DQB1*02:01 (OR = 1.63; CI = 1.19-2.24; p = 1.41E-03). Hardy-Weinberg (HW) analysis in MS patients revealed a significant DRB1*03:01~DQB1*02:01 homozyote excess (15 observed; 8.6 expected; p = 0.016). The OR for this genotype (5.27; CI = 1.47-28.52; p = 0.0036) suggests a recessive MS risk model. Controls displayed no HW deviations. The C*03:04~B*40:01 haplotype (OR = 0.27; CI = 0.14-0.51; p = 6.76E-06) was highly protective for MS, especially in haplotypes with A*02:01 (OR = 0.15; CI = 0.04-0.45; p = 6.51E-05). By itself, A*02:01 is moderately protective, (OR = 0.69; CI = 0.54-0.87; p = 1.46E-03), and haplotypes of A*02:01 with the HLA-B Thr80 Bw4 variant (Bw4T) more so (OR = 0.53; CI = 0.35-0.78; p = 7.55E-04). Protective associations with the Bw4 KIR ligand resulted from linkage disequilibrium (LD) with DRB1*15:01, but the Bw4T variant was protective (OR = 0.64; CI = 0.49-0.82; p = 3.37-04) independent of LD with DRB1*15:01. The Bw4I variant was not associated with MS. Overall, we find specific class I HLA polymorphisms to be protective for MS, independent of the strong predisposition conferred by DRB1*15:01.


Assuntos
Cadeias beta de HLA-DQ/genética , Cadeias HLA-DRB1/genética , Esclerose Múltipla/genética , Polimorfismo de Nucleotídeo Único , Motivos de Aminoácidos , Haplótipos , Humanos , Desequilíbrio de Ligação
3.
Genes Immun ; 20(4): 340, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29915315

RESUMO

Since the publication of this article, the authors have found that the numbers of patients and controls were reversed. This study included 412 MS patients and 419 controls. This correction applies to the Abstract, the final paragraph of the Introduction, and the first paragraph of the Materials and Methods. This was entirely a reporting error and does not impact the Results or Conclusions.

4.
Biol Blood Marrow Transplant ; 25(12): 2507-2509, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31381995

RESUMO

Allogeneic hematopoietic stem cell transplant from an HLA matched sibling donor is usually the preferable choice. The use of next-generation sequencing (NGS) for HLA typing in clinical practice provides broader coverage and higher resolution of HLA genes. We evaluated the frequency of DPB1 crossing-over events among patients and potential related donors typed with NGS. From July 2016 to January 2018, 593 patients and 2385 siblings were typed. We evaluated sibling matching status in 546 patients, and 44.8% of these patients had siblings that matched at HLA-A, -B, -C, -DRB1, and -DQB1 loci. In 306 patient-HLA matched sibling pairs, we found 6 pairs (1.96%) with 1 DPB1 mismatch, and 5 of these pairs included an additional mismatch in DPA1. No additional mismatches were observed at the low expression loci. Using the T cell epitope algorithm, 4 of these DP mismatches were classified as permissive, 1 as nonpermissive in the host-versus-graft direction, and 1 as nonpermissive in the graft-versus-host direction. The frequency of DPB1 and DPA1 mismatches is low, and their impact in related donor transplants is not well established. Although DP typing in related transplants goes beyond guidelines, it is especially relevant for sensitized patients. NGS-based HLA typing provides full gene coverage, and its use in clinical practice can enable better donor selection.


Assuntos
Seleção do Doador , Epitopos de Linfócito T/genética , Loci Gênicos , Antígenos HLA-A/genética , Antígenos HLA-B/genética , Antígenos HLA-C/genética , Antígenos HLA-DQ/genética , Cadeias HLA-DRB1/genética , Teste de Histocompatibilidade , Irmãos , Algoritmos , Aloenxertos , Feminino , Transplante de Células-Tronco Hematopoéticas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino
5.
Nature ; 493(7433): 526-31, 2013 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-23254933

RESUMO

Current genomic perspectives on animal diversity neglect two prominent phyla, the molluscs and annelids, that together account for nearly one-third of known marine species and are important both ecologically and as experimental systems in classical embryology. Here we describe the draft genomes of the owl limpet (Lottia gigantea), a marine polychaete (Capitella teleta) and a freshwater leech (Helobdella robusta), and compare them with other animal genomes to investigate the origin and diversification of bilaterians from a genomic perspective. We find that the genome organization, gene structure and functional content of these species are more similar to those of some invertebrate deuterostome genomes (for example, amphioxus and sea urchin) than those of other protostomes that have been sequenced to date (flies, nematodes and flatworms). The conservation of these genomic features enables us to expand the inventory of genes present in the last common bilaterian ancestor, establish the tripartite diversification of bilaterians using multiple genomic characteristics and identify ancient conserved long- and short-range genetic linkages across metazoans. Superimposed on this broadly conserved pan-bilaterian background we find examples of lineage-specific genome evolution, including varying rates of rearrangement, intron gain and loss, expansions and contractions of gene families, and the evolution of clade-specific genes that produce the unique content of each genome.


Assuntos
Padronização Corporal/genética , Evolução Molecular , Genoma/genética , Sanguessugas/genética , Moluscos/genética , Filogenia , Poliquetos/genética , Animais , Sequência Conservada/genética , Genes Homeobox/genética , Ligação Genética , Especiação Genética , Humanos , Mutação INDEL/genética , Íntrons/genética , Sanguessugas/anatomia & histologia , Moluscos/anatomia & histologia , Família Multigênica/genética , Poliquetos/anatomia & histologia , Sintenia/genética
6.
PLoS Genet ; 12(4): e1005963, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27058611

RESUMO

Congenital heart disease (CHD) has a complex genetic etiology, and recent studies suggest that high penetrance de novo mutations may account for only a small fraction of disease. In a multi-institutional cohort surveyed by exome sequencing, combining analysis of 987 individuals (discovery cohort of 59 affected trios and 59 control trios, and a replication cohort of 100 affected singletons and 533 unaffected singletons) we observe variation at novel and known loci related to a specific cardiac malformation the atrioventricular septal defect (AVSD). In a primary analysis, by combining developmental coexpression networks with inheritance modeling, we identify a de novo mutation in the DNA binding domain of NR1D2 (p.R175W). We show that p.R175W changes the transcriptional activity of Nr1d2 using an in vitro transactivation model in HUVEC cells. Finally, we demonstrate previously unrecognized cardiovascular malformations in the Nr1d2tm1-Dgen knockout mouse. In secondary analyses we map genetic variation to protein-interaction networks suggesting a role for two collagen genes in AVSD, which we corroborate by burden testing in a second replication cohort of 100 AVSDs and 533 controls (p = 8.37e-08). Finally, we apply a rare-disease inheritance model to identify variation in genes previously associated with CHD (ZFPM2, NSD1, NOTCH1, VCAN, and MYH6), cardiac malformations in mouse models (ADAM17, CHRD, IFT140, PTPRJ, RYR1 and ATE1), and hypomorphic alleles of genes causing syndromic CHD (EHMT1, SRCAP, BBS2, NOTCH2, and KMT2D) in 14 of 59 trios, greatly exceeding variation in control trios without CHD (p = 9.60e-06). In total, 32% of trios carried at least one putatively disease-associated variant across 19 loci,suggesting that inherited and de novo variation across a heterogeneous group of loci may contribute to disease risk.


Assuntos
Defeitos dos Septos Cardíacos/genética , Animais , Feminino , Heterozigoto , Homozigoto , Humanos , Masculino , Camundongos , Camundongos Knockout , Mutação , Linhagem
7.
Am J Med Genet A ; 164A(2): 397-406, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24127225

RESUMO

Congenital heart defects (CHDs) are common malformations, affecting four to eight per 1,000 total births. Conotruncal defects are an important pathogenetic subset of CHDs, comprising nearly 20% of the total. Although both environmental and genetic factors are known to contribute to the occurrence of conotruncal defects, the causes remain unknown for most. To identify novel candidate genes/loci, we used array comparative genomic hybridization to detect chromosomal microdeletions/duplications. From a population base of 974,579 total births born during 1999-2004, we screened 389 California infants born with tetralogy of Fallot or d-transposition of the great arteries. We found that 1.7% (5/288) of males with a conotruncal defect had sex chromosome aneuploidy, a sevenfold increased frequency (relative risk = 7.0; 95% confidence interval 2.9-16.9). We identified eight chromosomal microdeletions/duplications for conotruncal defects. From these duplications and deletions, we found five high priority candidate genes (GATA4, CRKL, BMPR1A, SNAI2, and ZFHX4). This is the initial report that sex chromosome aneuploidy is associated with conotruncal defects among boys. These chromosomal microduplications/deletions provide evidence that GATA4, SNAI2, and CRKL are highly dosage sensitive genes involved in outflow tract development. Genome wide screening for copy number variation can be productive for identifying novel genes/loci contributing to non-syndromic common malformations.


Assuntos
Aneuploidia , Loci Gênicos , Cardiopatias Congênitas/genética , Cromossomos Sexuais , California , Aberrações Cromossômicas , Deleção Cromossômica , Duplicação Cromossômica , Cromossomos Humanos Par 22 , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA , Feminino , Ordem dos Genes , Cardiopatias Congênitas/diagnóstico , Humanos , Lactente , Recém-Nascido , Cariótipo , Masculino , Sistema de Registros
8.
Nature ; 453(7198): 1064-71, 2008 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-18563158

RESUMO

Lancelets ('amphioxus') are the modern survivors of an ancient chordate lineage, with a fossil record dating back to the Cambrian period. Here we describe the structure and gene content of the highly polymorphic approximately 520-megabase genome of the Florida lancelet Branchiostoma floridae, and analyse it in the context of chordate evolution. Whole-genome comparisons illuminate the murky relationships among the three chordate groups (tunicates, lancelets and vertebrates), and allow not only reconstruction of the gene complement of the last common chordate ancestor but also partial reconstruction of its genomic organization, as well as a description of two genome-wide duplications and subsequent reorganizations in the vertebrate lineage. These genome-scale events shaped the vertebrate genome and provided additional genetic variation for exploitation during vertebrate evolution.


Assuntos
Cordados/genética , Evolução Molecular , Genoma/genética , Animais , Cordados/classificação , Sequência Conservada , Elementos de DNA Transponíveis/genética , Duplicação Gênica , Genes/genética , Ligação Genética , Humanos , Íntrons/genética , Cariotipagem , Família Multigênica , Filogenia , Polimorfismo Genético/genética , Proteínas/genética , Sintenia , Fatores de Tempo , Vertebrados/classificação , Vertebrados/genética
9.
HLA ; 104(4): e15702, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-39435845

RESUMO

HLA antigens were historically defined according to the unique reactivity pattern of cells expressing HLA molecules with distinctive clusters of allo-antisera and/or monoclonal antibodies. Subsequently, amino acid residues determining epitopes (DEP) in the HLA molecule were correlated with reactivity patterns. In current clinical practice, the presence of allo-antibodies is assessed using Luminex-based solid phase single antigen bead (SAB) assays for transplantation. Recently, novel antigens were proposed for HLA molecules with DEP patterns that do not match any serologically defined antigens recognised by the WHO Nomenclature Committee. To validate the antigens, mean fluorescence intensity values of SABs tested on >13,000 patients' sera were extracted from clinical databases and analysed by scatter plots using a linear regression model. We found that when two proteins were considered as the same antigen in the original study, for example, HLA-A*02:01 and -A*02:06, their correlation ranked among the highest values at each locus. In contrast, discrete asymmetric outliers were observed when there were different antigens, for example, HLA-A*30:01 and -A*30:02, allowing validation and confirmation of 20 novel antigens for HLA-A, -B, -C and -DR. The outliers were confirmed to be true or false by flow cytometric crossmatches. In addition to the previously defined residues for antigen assignments, findings suggest that further distinction should be made for common antigens by including the substitutions at residue 67 of HLA-B, 67 and 74 of -DR. These serologic analyses can be applied systematically to identify and confirm novel antigens. These developments will lead to designing optimal SAB panels and further improving virtual donor-specific antibodies assessment.


Assuntos
Alelos , Antígenos HLA , Teste de Histocompatibilidade , Humanos , Teste de Histocompatibilidade/métodos , Antígenos HLA/genética , Antígenos HLA/imunologia , Epitopos/imunologia , Citometria de Fluxo/métodos , Isoanticorpos/imunologia , Isoanticorpos/sangue
10.
Artigo em Inglês | MEDLINE | ID: mdl-39002722

RESUMO

BACKGROUND: After introducing IL-1/IL-6 inhibitors, some patients with Still and Still-like disease developed unusual, often fatal, pulmonary disease. This complication was associated with scoring as DReSS (drug reaction with eosinophilia and systemic symptoms) implicating these inhibitors, although DReSS can be difficult to recognize in the setting of systemic inflammatory disease. OBJECTIVE: To facilitate recognition of IL-1/IL-6 inhibitor-DReSS in systemic inflammatory illnesses (Still/Still-like) by looking at timing and reaction-associated features. We evaluated outcomes of stopping or not stopping IL-1/IL-6 inhibitors after DReSS reaction began. METHODS: In an international study collaborating primarily with pediatric specialists, we characterized features of 89 drug-reaction cases versus 773 drug-exposed controls and compared outcomes of 52 cases stopping IL-1/IL-6 inhibitors with 37 cases not stopping these drugs. RESULTS: Before the reaction began, drug-reaction cases and controls were clinically comparable, except for younger disease-onset age for reaction cases with preexisting cardiothoracic comorbidities. After the reaction began, increased rates of pulmonary complications and macrophage activation syndrome differentiated drug-reaction cases from drug-tolerant controls (P = 4.7 × 10-35 and P = 1.1 × 10-24, respectively). The initial DReSS feature was typically reported 2 to 8 weeks after initiating IL-1/IL-6 inhibition. In drug-reaction cases stopping versus not stopping IL-1/IL-6-inhibitor treatment, reaction-related features were indistinguishable, including pulmonary complication rates (75% [39 of 52] vs 76% [28 of 37]). Those stopping subsequently required fewer medications for treatment of systemic inflammation, had decreased rates of macrophage activation syndrome, and improved survival (P = .005, multivariate regression). Resolution of pulmonary complications occurred in 67% (26 of 39) of drug-reaction cases who stopped and in none who continued inhibitors. CONCLUSIONS: In systemic inflammatory illnesses, recognition of IL-1/IL-6-inhibitor-associated reactions followed by avoidance of IL-1/IL-6 inhibitors significantly improved outcomes.

11.
HLA ; 102(4): 501-507, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37403548

RESUMO

The nomenclatures used to describe HLA and killer-cell immunoglobulin-like receptor (KIR) alleles distinguish unique nucleotide and peptide sequences, and patterns of expression, but are insufficient for describing genotyping results, as description of ambiguities and relations across loci require terminology beyond allele names. The genotype list (GL) String grammar describes genotyping results for genetic systems with defined nomenclatures, like HLA and KIR, documenting what is known and unknown about a given genotyping result. However, the accuracy of a GL String is dependent on the reference database version under which it was generated. Here, we describe the GL string code (GLSC) system, which associates each GL String with meta-data describing the specific reference context in which the GL String was created, and in which it should be interpreted. GLSC is a defined syntax for exchanging GL Strings in the context of a specific gene-family namespace, allele-name code-system, and pertinent reference database version. GLSC allows HLA and KIR genotyping data to be transmitted, parsed and interpreted in the appropriate context, in an unambiguous manner, on modern data-systems, including Health Level 7 Fast Healthcare Interoperability Resource systems. Technical specification for GLSC can be found at https://glstring.org.


Assuntos
Gerenciamento de Dados , Receptores KIR , Humanos , Genótipo , Alelos , Receptores KIR/genética , Bases de Dados Factuais
12.
Front Neurol ; 14: 1326738, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38145128

RESUMO

Background: The HLA-DRB1 gene in the major histocompatibility complex (MHC) region in chromosome 6p21 is the strongest genetic factor identified as influencing multiple sclerosis (MS) susceptibility. DNA methylation changes associated with MS have been consistently detected at the MHC region. However, understanding the full scope of epigenetic regulations of the MHC remains incomplete, due in part to the limited coverage of this region by standard whole genome bisulfite sequencing or array-based methods. Methods: We developed and validated an MHC capture protocol coupled with bisulfite sequencing and conducted a comprehensive analysis of the MHC methylation landscape in blood samples from 147 treatment naïve MS study participants and 129 healthy controls. Results: We identified 132 differentially methylated region (DMRs) within MHC region associated with disease status. The DMRs overlapped with established MS risk loci. Integration of the MHC methylome with human leukocyte antigen (HLA) genetic data indicate that the methylation changes are significantly associated with HLA genotypes. Using DNA methylation quantitative trait loci (mQTL) mapping and the causal inference test (CIT), we identified 643 cis-mQTL-DMRs paired associations, including 71 DMRs possibly mediating causal relationships between 55 single nucleotide polymorphisms (SNPs) and MS risk. Results: The results describe MS-associated methylation changes in MHC region and highlight the association between HLA genotypes and methylation changes. Results from the mQTL and CIT analyses provide evidence linking MHC region variations, methylation changes, and disease risk for MS.

13.
HLA ; 100(3): 193-231, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35538616

RESUMO

HLA serological specificities were defined by the reactivity of HLA molecules with sets of sera and monoclonal antibodies. Many recently identified alleles defined by molecular typing lack their serotype assignment. We surveyed the literature describing the correlation of the reactivity of serologic reagents with AA residues. 20 - 25 AA residues determining epitopes (DEP) that correlated with 82 WHO serologic specificities were identified for HLA class I loci. Thirteen DEP each located in the beta-1 domains that correlated with 24 WHO serologic specificities were identified for HLA-DRB1 and -DQB1 loci. The designation of possible HLA-DPB1, -DQA1, -DPA1, and additional serological specificities that result from epitopes defined by residues located at both -DQA1 and -DQB1 subunits were also examined. HATS software was developed for automated serotype assignments to HLA alleles in one of the three hierarchical matching criteria: (1) all DEP (FULL); (2) selected DEP specific to each serological specificity (SEROTYPE); (3) one AA mismatch with one or more SEROTYPES (INCOMPLETE). Results were validated by evaluating the alleles whose serotypes do not correspond to the first field of the allele name listed in the HLA dictionary. Additional 85 and 21 DEP patterns that do not correspond to any WHO serologic specificities for common HLA class I and DRB1 alleles were identified, respectively. A comprehensive antibody identification panel would allow for accurate unacceptable antigen listing and compatibility predictions in solid organ transplantation. We propose that antibody-screening panels should include all serologic specificities identified in this study.


Assuntos
Alelos , Epitopos/genética , Cadeias beta de HLA-DQ/genética , Cadeias HLA-DRB1 , Humanos
14.
Nat Commun ; 13(1): 5107, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042219

RESUMO

The SARS-CoV-2 pandemic has differentially impacted populations across race and ethnicity. A multi-omic approach represents a powerful tool to examine risk across multi-ancestry genomes. We leverage a pandemic tracking strategy in which we sequence viral and host genomes and transcriptomes from nasopharyngeal swabs of 1049 individuals (736 SARS-CoV-2 positive and 313 SARS-CoV-2 negative) and integrate them with digital phenotypes from electronic health records from a diverse catchment area in Northern California. Genome-wide association disaggregated by admixture mapping reveals novel COVID-19-severity-associated regions containing previously reported markers of neurologic, pulmonary and viral disease susceptibility. Phylodynamic tracking of consensus viral genomes reveals no association with disease severity or inferred ancestry. Summary data from multiomic investigation reveals metagenomic and HLA associations with severe COVID-19. The wealth of data available from residual nasopharyngeal swabs in combination with clinical data abstracted automatically at scale highlights a powerful strategy for pandemic tracking, and reveals distinct epidemiologic, genetic, and biological associations for those at the highest risk.


Assuntos
COVID-19 , Pandemias , COVID-19/epidemiologia , Genoma Viral , Estudo de Associação Genômica Ampla , Humanos , SARS-CoV-2/genética
15.
Nature ; 437(7055): 88-93, 2005 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16136132

RESUMO

We present a global comparison of differences in content of segmental duplication between human and chimpanzee, and determine that 33% of human duplications (> 94% sequence identity) are not duplicated in chimpanzee, including some human disease-causing duplications. Combining experimental and computational approaches, we estimate a genomic duplication rate of 4-5 megabases per million years since divergence. These changes have resulted in gene expression differences between the species. In terms of numbers of base pairs affected, we determine that de novo duplication has contributed most significantly to differences between the species, followed by deletion of ancestral duplications. Post-speciation gene conversion accounts for less than 10% of recent segmental duplication. Chimpanzee-specific hyperexpansion (> 100 copies) of particular segments of DNA have resulted in marked quantitative differences and alterations in the genome landscape between chimpanzee and human. Almost all of the most extreme differences relate to changes in chromosome structure, including the emergence of African great ape subterminal heterochromatin. Nevertheless, base per base, large segmental duplication events have had a greater impact (2.7%) in altering the genomic landscape of these two species than single-base-pair substitution (1.2%).


Assuntos
Evolução Molecular , Duplicação Gênica , Genoma Humano , Genômica , Pan troglodytes/genética , Animais , Cromossomos de Mamíferos/genética , Biologia Computacional , Conversão Gênica , Humanos , Especificidade da Espécie , Fatores de Tempo
16.
Hum Immunol ; 82(11): 820-828, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34479742

RESUMO

Next generation sequencing (NGS) is being applied for HLA typing in research and clinical settings. NGS HLA typing has made it feasible to sequence exons, introns and untranslated regions simultaneously, with significantly reduced labor and reagent cost per sample, rapid turnaround time, and improved HLA genotype accuracy. NGS technologies bring challenges for cost-effective computation, data processing and exchange of NGS-based HLA data. To address these challenges, guidelines and specifications such as Genotype List (GL) String, Minimum Information for Reporting Immunogenomic NGS Genotyping (MIRING), and Histoimmunogenetics Markup Language (HML) were proposed to streamline and standardize reporting of HLA genotypes. As part of the 17th International HLA and Immunogenetics Workshop (IHIW), we implemented standards and systems for HLA genotype reporting that included GL String, MIRING and HML, and found that misunderstanding or misinterpretations of these standards led to inconsistencies in the reporting of NGS HLA genotyping results. This may be due in part to a historical lack of centralized data reporting standards in the histocompatibility and immunogenetics community. We have worked with software and database developers, clinicians and scientists to address these issues in a collaborative fashion as part of the Data Standard Hackathons (DaSH) for NGS. Here we report several categories of challenges to the consistent exchange of NGS HLA genotyping data we have observed. We hope to address these challenges in future DaSH for NGS efforts.


Assuntos
Técnicas de Genotipagem/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Teste de Histocompatibilidade/métodos , Imunogenética/normas , Laboratórios/normas , Técnicas de Genotipagem/normas , Antígenos HLA/genética , Teste de Histocompatibilidade/normas , Humanos , Imunogenética/métodos , Análise de Sequência de DNA/métodos , Análise de Sequência de DNA/normas , Software
17.
HLA ; 97(6): 512-519, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33719220

RESUMO

The International human leukocyte antigen (HLA) and Immunogenetics Workshops (IHIWs) have fostered international collaborations of researchers and experts in the fields of HLA, histocompatibility and immunology. These IHIW collaborations have comprised many projects focused on achieving a variety of specific goals. The international and collaborative nature of these projects necessitates the collection and analysis of complex data generated in multiple laboratories, often using multiple methods of acquisition. Collection and storage of these data in a consistent way adds value to IHIW projects, which can be extended to future work. DNA-based genotyping data, especially HLA genotyping data, can be transmitted in the form of a Histoimmunogenetics Markup Language (HML) document. HML facilitates clear communication of a genotype and supporting metadata, such as, sequencing platform, laboratory assays, consensus sequence, and interpretation. Sequence information can be reported relative to known reference sequences, which add meaning and context to genotypes. Selecting the correct reference sequence for a given allele sequence is nuanced, and guidelines have emerged through collaborative community efforts such as Data Standards Hackathons. Here, we describe the guidelines established for the selection of reference sequences to be used in transmission of HLA (and MICA/MICB) genotyping data for the 18th IHIW.


Assuntos
Antígenos HLA , Imunogenética , Alelos , Genótipo , Antígenos HLA/genética , Antígenos de Histocompatibilidade Classe I/genética , Teste de Histocompatibilidade , Humanos
18.
Front Immunol ; 12: 644838, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211458

RESUMO

Multiple sclerosis (MS) susceptibility shows strong genetic associations with HLA alleles and haplotypes. We genotyped 11 HLA genes in 477 non-Hispanic European MS patients and their 954 unaffected parents using a validated next-generation sequencing (NGS) methodology. HLA haplotypes were assigned unequivocally by tracing HLA allele transmissions. We explored HLA haplotype/allele associations with MS using the genotypic transmission disequilibrium test (gTDT) and multiallelic TDT (mTDT). We also conducted a case-control (CC) study with all patients and 2029 healthy unrelated ethnically matched controls. We performed separate analyses of 54 extended multi-case families by reviewing transmission of haplotype blocks. The haplotype fragment including DRB5*01:01:01~DRB1*15:01:01:01 was significantly associated with predisposition (gTDT: p < 2.20e-16; mTDT: p =1.61e-07; CC: p < 2.22e-16) as reported previously. A second risk allele, DPB1*104:01 (gTDT: p = 3.69e-03; mTDT: p = 2.99e-03; CC: p = 1.00e-02), independent from the haplotype bearing DRB1*15:01 was newly identified. The allele DRB1*01:01:01 showed significant protection (gTDT: p = 8.68e-06; mTDT: p = 4.50e-03; CC: p = 1.96e-06). Two DQB1 alleles, DQB1*03:01 (gTDT: p = 2.86e-03; mTDT: p = 5.56e-02; CC: p = 4.08e-05) and DQB1*03:03 (gTDT: p = 1.17e-02; mTDT: p = 1.16e-02; CC: p = 1.21e-02), defined at two-field level also showed protective effects. The HLA class I block, A*02:01:01:01~C*03:04:01:01~B*40:01:02 (gTDT: p = 5.86e-03; mTDT: p = 3.65e-02; CC: p = 9.69e-03) and the alleles B*27:05 (gTDT: p = 6.28e-04; mTDT: p = 2.15e-03; CC: p = 1.47e-02) and B*38:01 (gTDT: p = 3.20e-03; mTDT: p = 6.14e-03; CC: p = 1.70e-02) showed moderately protective effects independently from each other and from the class II associated factors. By comparing statistical significance of 11 HLA loci and 19 haplotype segments with both untruncated and two-field allele names, we precisely mapped MS candidate alleles/haplotypes while eliminating false signals resulting from 'hitchhiking' alleles. We assessed genetic burden for the HLA allele/haplotype identified in this study. This family-based study including the highest-resolution of HLA alleles proved to be powerful and efficient for precise identification of HLA genotypes associated with both, susceptibility and protection to development of MS.


Assuntos
Alelos , Predisposição Genética para Doença , Antígenos HLA-DP , Haplótipos , Esclerose Múltipla , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Feminino , Técnicas de Genotipagem , Antígenos HLA-DP/genética , Antígenos HLA-DP/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/genética , Esclerose Múltipla/imunologia
19.
Nature ; 432(7018): 761-4, 2004 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-15592415

RESUMO

Strategies for assembling large, complex genomes have evolved to include a combination of whole-genome shotgun sequencing and hierarchal map-assisted sequencing. Whole-genome maps of all types can aid genome assemblies, generally starting with low-resolution cytogenetic maps and ending with the highest resolution of sequence. Fingerprint clone maps are based upon complete restriction enzyme digests of clones representative of the target genome, and ultimately comprise a near-contiguous path of clones across the genome. Such clone-based maps are used to validate sequence assembly order, supply long-range linking information for assembled sequences, anchor sequences to the genetic map and provide templates for closing gaps. Fingerprint maps are also a critical resource for subsequent functional genomic studies, because they provide a redundant and ordered sampling of the genome with clones. In an accompanying paper we describe the draft genome sequence of the chicken, Gallus gallus, the first species sequenced that is both a model organism and a global food source. Here we present a clone-based physical map of the chicken genome at 20-fold coverage, containing 260 contigs of overlapping clones. This map represents approximately 91% of the chicken genome and enables identification of chicken clones aligned to positions in other sequenced genomes.


Assuntos
Galinhas/genética , Genoma , Genômica , Mapeamento Físico do Cromossomo , Animais , Cromossomos Artificiais Bacterianos/genética , Clonagem Molecular , Mapeamento de Sequências Contíguas , Impressões Digitais de DNA , Ligação Genética/genética , Sitios de Sequências Rotuladas
20.
medRxiv ; 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32766602

RESUMO

During COVID19 and other viral pandemics, rapid generation of host and pathogen genomic data is critical to tracking infection and informing therapies. There is an urgent need for efficient approaches to this data generation at scale. We have developed a scalable, high throughput approach to generate high fidelity low pass whole genome and HLA sequencing, viral genomes, and representation of human transcriptome from single nasopharyngeal swabs of COVID19 patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA