Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Neuroimage ; 280: 120333, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37619795

RESUMO

Functional connectivity is crucial for cognitive processes in the healthy brain and serves as a marker for a range of neuropathological conditions. Non-invasive exploration of functional coupling using temporally resolved techniques such as MEG allows for a unique opportunity of exploring this fundamental brain mechanism. The indirect nature of MEG measurements complicates the estimation of functional coupling due to the volume conduction and spatial leakage effects. In the previous work (Ossadtchi et al., 2018), we introduced PSIICOS, a method that for the first time allowed us to suppress the volume conduction effect and yet retain information about functional networks whose nodes are coupled with close to zero or zero mutual phase lag. In this paper, we demonstrate analytically that the PSIICOS projection is optimal in achieving a controllable trade-off between suppressing mutual spatial leakage and retaining information about zero- or close to zero-phase coupled networks. We also derive an alternative solution using the regularization-based inverse of the mutual spatial leakage matrix and show its equivalence to the original PSIICOS. We then discuss how PSIICOS solution to the functional connectivity estimation problem can be incorporated into the conventional source estimation framework. Instead of sources, the unknowns are the elementary dyadic networks and their activation time series are formalized by the corresponding source-space cross-spectral coefficients. This view on connectivity estimation as a regression problem opens up new opportunities for formulating a set of principled estimators based on the rich intuition accumulated in the neuroimaging community.


Assuntos
Encéfalo , Nível de Saúde , Humanos , Intuição , Neuroimagem , Eletroencefalografia
2.
Neuroimage ; 228: 117677, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33385549

RESUMO

Magnetoencephalography (MEG) is a neuroimaging method ideally suited for non-invasive studies of brain dynamics. MEG's spatial resolution critically depends on the approach used to solve the ill-posed inverse problem in order to transform sensor signals into cortical activation maps. Over recent years non-globally optimized solutions based on the use of adaptive beamformers (BF) gained popularity. When operating in the environment with a small number of uncorrelated sources the BFs perform optimally and yield high spatial resolution. However, the BFs are known to fail when dealing with correlated sources acting like poorly tuned spatial filters with low signal-to-noise ratio (SNR) of the output timeseries and often meaningless cortical maps of power distribution. This fact poses a serious limitation on the broader use of this promising technique especially since fundamental mechanisms of brain functioning, its inherent symmetry and task-based experimental paradigms result into a great deal of correlation in the activity of cortical sources. To cope with this problem, we developed a novel data covariance modification approach that allows for building beamformers that maintain high spatial resolution when operating in the environments with correlated sources. At the core of our method is a projection operation applied to the vectorized sensor-space covariance matrix. This projection does not remove the activity of the correlated sources from the sensor-space covariance matrix but rather selectively handles their contributions to the covariance matrix and creates a sufficiently accurate approximation of an ideal data covariance that could hypothetically be observed should these sources be uncorrelated. Since the projection operation is reciprocal to the PSIICOS method developed by us earlier (Ossadtchi et al., 2018) we refer to the family of algorithms presented here as ReciPSIICOS. We assess the performance of the novel approach using realistically simulated MEG data and show its superior performance in comparison to the classical BF approaches and well established MNE as a method immune to source synchrony by design. We have also applied our approach to the MEG datasets from the two experiments involving two different auditory tasks. The analysis of experimental MEG datasets showed that beamformers from ReciPSIICOS family, but not the classical BF, discovered the expected bilateral focal sources in the primary auditory cortex and detected motor cortex activity associated with the audio-motor task. In most cases MNE managed well but as expected produced more spatially diffuse source distributions. Notably, ReciPSIICOS beamformers yielded cortical activity estimates with SNR several times higher than that obtained with the classical BF, which may indirectly indicate the severeness of the signal cancellation problem when applying classical beamformers to MEG signals generated by synchronous sources.


Assuntos
Algoritmos , Encéfalo/fisiologia , Simulação por Computador , Magnetoencefalografia/métodos , Neuroimagem/métodos , Processamento de Sinais Assistido por Computador , Humanos , Modelos Neurológicos
3.
Hum Brain Mapp ; 42(15): 4844-4856, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34327772

RESUMO

In the current article, we present the first solid-state sensor feasible for magnetoencephalography (MEG) that works at room temperature. The sensor is a fluxgate magnetometer based on yttrium-iron garnet films (YIGM). In this feasibility study, we prove the concept of usage of the YIGM in terms of MEG by registering a simple brain induced field-the human alpha rhythm. All the experiments and results are validated with usage of another kind of high-sensitive magnetometers-optically pumped magnetometer, which currently appears to be well-established in terms of MEG.


Assuntos
Ritmo alfa/fisiologia , Córtex Cerebral/fisiologia , Magnetoencefalografia/instrumentação , Magnetometria/instrumentação , Adulto , Estudos de Viabilidade , Humanos
4.
Brain ; 143(6): 1674-1685, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32176800

RESUMO

Neurofeedback has begun to attract the attention and scrutiny of the scientific and medical mainstream. Here, neurofeedback researchers present a consensus-derived checklist that aims to improve the reporting and experimental design standards in the field.


Assuntos
Lista de Checagem/métodos , Neurorretroalimentação/métodos , Adulto , Consenso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Revisão da Pesquisa por Pares , Projetos de Pesquisa/normas , Participação dos Interessados
5.
Sci Rep ; 14(1): 11138, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750127

RESUMO

Although more people are engaging in meditation practices that require specialized training, few studies address the issues associated with nervous activity pattern changes brought about by such training. For beginners, it remains unclear how much practice is needed before objective physiological changes can be detected, whether or not they are similar across the novices and what are the optimal strategies to track these changes. To clarify these questions we recruited individuals with no prior meditation experience. The experimental group underwent an eight-week Taoist meditation course administered by a professional, while the control group listened to audiobooks. Both groups participated in audio-guided, 34-min long meditation sessions before and after the 8-week long intervention. Their EEG, photoplethysmogram, respiration, and skin conductance were recorded during the mediation and resting state periods. Compared to the control group, the experimental group exhibited band-specific topically organized changes of the resting state brain activity and heart rate variability associated with sympathetic system activation. Importantly, no significant changes were found during the meditation process prior and post the 8-week training in either of the groups. The absence of notable changes in CNS and ANS activity indicators during meditation sessions, for both the experimental and control groups, casts doubt on the effectiveness of wearable biofeedback devices in meditation practice. This finding redirects focus to the importance of monitoring resting state activity to evaluate progress in beginner meditators. Also, 16 h of training is not enough for forming individual objectively different strategies manifested during the meditation sessions. Our results contributed to the development of tools to objectively monitor the progress in novice meditators and the choice of the relevant monitoring strategies. According to our findings, in order to track early changes brought about by the meditation practice it is preferable to monitor brain activity outside the actual meditation sessions.


Assuntos
Encéfalo , Meditação , Sistema Nervoso Simpático , Humanos , Meditação/métodos , Masculino , Feminino , Encéfalo/fisiologia , Adulto , Sistema Nervoso Simpático/fisiologia , Descanso/fisiologia , Eletroencefalografia , Frequência Cardíaca/fisiologia , Pessoa de Meia-Idade , Resposta Galvânica da Pele/fisiologia , Adulto Jovem
6.
J Neural Eng ; 20(5)2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37683653

RESUMO

Objective.Neurofeedback and brain-computer interfacing technology open the exciting opportunity for establishing interactive closed-loop real-time communication with the human brain. This requires interpreting brain's rhythmic activity and generating timely feedback to the brain. Lower delay between neuronal events and the appropriate feedback increases the efficacy of such interaction. Novel more efficient approaches capable of tracking brain rhythm's phase and envelope are needed for scenarios that entail instantaneous interaction with the brain circuits.Approach.Isolating narrow-band signals incurs fundamental delays. To some extent they can be compensated using forecasting models. Given the high quality of modern time series forecasting neural networks we explored their utility for low-latency extraction of brain rhythm parameters. We tested five neural networks with conceptually distinct architectures in forecasting synthetic EEG rhythms. The strongest architecture was then trained to simultaneously filter and forecast EEG data. We compared it against the state-of-the-art techniques using synthetic and real data from 25 subjects.Main results.The temporal convolutional network (TCN) remained the strongest forecasting model that achieved in the majority of testing scenarios>90% rhythm's envelope correlation with<10 ms effective delay and<20∘circular standard deviation of phase estimates. It also remained stable enough to noise level perturbations. Trained to filter and predict the TCN outperformed the cFIR, the Kalman filter based state-space estimation technique and remained on par with the larger Conv-TasNet architecture.Significance.Here we have for the first time demonstrated the utility of the neural network approach for low-latency narrow-band filtering of brain activity signals. Our proposed approach coupled with efficient implementation enhances the effectiveness of brain-state dependent paradigms across various applications. Moreover, our framework for forecasting EEG signals holds promise for investigating the predictability of brain activity, providing valuable insights into the fundamental questions surrounding the functional organization and hierarchical information processing properties of the brain.


Assuntos
Interfaces Cérebro-Computador , Neurorretroalimentação , Humanos , Encéfalo , Cognição , Redes Neurais de Computação
7.
J Neural Eng ; 19(3)2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35439749

RESUMO

Objective. Epilepsy is a widely spread neurological disease, whose treatment often requires resection of the pathological cortical tissue. Interictal spike analysis observed in the non-invasively collected EEG or MEG data offers an attractive way to localize epileptogenic cortical structures for surgery planning purposes. Interictal spike detection in lengthy multichannel data is a daunting task that is still often performed manually. This frequently limits such an analysis to a small portion of the data which renders the appropriate risks of missing the potentially epileptogenic region. While a plethora of automatic spike detection techniques have been developed each with its own assumptions and limitations, none of them is ideal and the best results are achieved when the output of several automatic spike detectors are combined. This is especially true in the low signal-to-noise ratio conditions. To this end we propose a novel biomimetic approach for automatic spike detection based on a constrained mixed spline machinery that we dub as fast parametric curve matching (FPCM).Approach. Using the peak-wave shape parametrization, the constrained parametric morphological model is constructed and convolved with the observed multichannel data to efficiently determine mixed spline parameters corresponding to each time-point in the dataset. Then the logical predicates that directly map to verbalized text-book like descriptions of the expected interictal event morphology allow us to accomplish the spike detection task.Main results. The results of simulations mimicking typical low SNR scenarios show the robustness and high receiver operating characteristic AUC values of the FPCM method as compared to the spike detection performed using more conventional approaches such as wavelet decomposition, template matching or simple amplitude thresholding. Applied to the real MEG and EEG data from the human patients and to rat ECoG data, the FPCM technique demonstrates reliable detection of the interictal events and localization of epileptogenic zones concordant with independent conclusions made by the epileptologist.Significance. Since the FPCM is computationally light, tolerant to high amplitude artifacts and flexible to accommodate verbalized descriptions of an arbitrary target morphology, it is likely to complement the existing arsenal of means for analysis of noisy interictal datasets.


Assuntos
Eletroencefalografia , Epilepsia , Animais , Artefatos , Eletrocorticografia , Eletroencefalografia/métodos , Epilepsia/diagnóstico , Epilepsia/cirurgia , Humanos , Magnetoencefalografia , Curva ROC , Ratos
8.
J Neural Eng ; 19(6)2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36356309

RESUMO

Objective. Speech decoding, one of the most intriguing brain-computer interface applications, opens up plentiful opportunities from rehabilitation of patients to direct and seamless communication between human species. Typical solutions rely on invasive recordings with a large number of distributed electrodes implanted through craniotomy. Here we explored the possibility of creating speech prosthesis in a minimally invasive setting with a small number of spatially segregated intracranial electrodes.Approach. We collected one hour of data (from two sessions) in two patients implanted with invasive electrodes. We then used only the contacts that pertained to a single stereotactic electroencephalographic (sEEG) shaft or an electrocorticographic (ECoG) stripe to decode neural activity into 26 words and one silence class. We employed a compact convolutional network-based architecture whose spatial and temporal filter weights allow for a physiologically plausible interpretation.Mainresults. We achieved on average 55% accuracy using only six channels of data recorded with a single minimally invasive sEEG electrode in the first patient and 70% accuracy using only eight channels of data recorded for a single ECoG strip in the second patient in classifying 26+1 overtly pronounced words. Our compact architecture did not require the use of pre-engineered features, learned fast and resulted in a stable, interpretable and physiologically meaningful decision rule successfully operating over a contiguous dataset collected during a different time interval than that used for training. Spatial characteristics of the pivotal neuronal populations corroborate with active and passive speech mapping results and exhibit the inverse space-frequency relationship characteristic of neural activity. Compared to other architectures our compact solution performed on par or better than those recently featured in neural speech decoding literature.Significance. We showcase the possibility of building a speech prosthesis with a small number of electrodes and based on a compact feature engineering free decoder derived from a small amount of training data.


Assuntos
Interfaces Cérebro-Computador , Eletrocorticografia , Humanos , Eletrocorticografia/métodos , Fala/fisiologia , Eletroencefalografia/métodos , Redes Neurais de Computação , Eletrodos
9.
PLoS One ; 17(10): e0275063, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36282803

RESUMO

The reliable identification of the irritative zone (IZ) is a prerequisite for the correct clinical evaluation of medically refractory patients affected by epilepsy. Given the complexity of MEG data, visual analysis of epileptiform neurophysiological activity is highly time consuming and might leave clinically relevant information undetected. We recorded and analyzed the interictal activity from seven patients affected by epilepsy (Vectorview Neuromag), who successfully underwent epilepsy surgery (Engel > = II). We visually marked and localized characteristic epileptiform activity (VIS). We implemented a two-stage pipeline for the detection of interictal spikes and the delineation of the IZ. First, we detected candidate events from peaky ICA components, and then clustered events around spatio-temporal patterns identified by convolutional sparse coding. We used the average of clustered events to create IZ maps computed at the amplitude peak (PEAK), and at the 50% of the peak ascending slope (SLOPE). We validated our approach by computing the distance of the estimated IZ (VIS, SLOPE and PEAK) from the border of the surgically resected area (RA). We identified 25 spatiotemporal patterns mimicking the underlying interictal activity (3.6 clusters/patient). Each cluster was populated on average by 22.1 [15.0-31.0] spikes. The predicted IZ maps had an average distance from the resection margin of 8.4 ± 9.3 mm for visual analysis, 12.0 ± 16.5 mm for SLOPE and 22.7 ±. 16.4 mm for PEAK. The consideration of the source spread at the ascending slope provided an IZ closer to RA and resembled the analysis of an expert observer. We validated here the performance of a data-driven approach for the automated detection of interictal spikes and delineation of the IZ. This computational framework provides the basis for reproducible and bias-free analysis of MEG recordings in epilepsy.


Assuntos
Epilepsia , Magnetoencefalografia , Humanos , Eletroencefalografia , Epilepsia/cirurgia , Inflamação , Mapeamento Encefálico
10.
PLoS One ; 16(12): e0260626, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34855823

RESUMO

Meditation is a consciousness state associated with specific physiological and neural correlates. Numerous investigations of these correlates reported controversial results which prevented a consistent depiction of the underlying neurophysiological processes. Here we investigated the dynamics of multiple neurophysiological indicators during a staged meditation session. We measured the physiological changes at rest and during the guided Taoist meditation in experienced meditators and naive subjects. We recorded EEG, respiration, galvanic skin response, and photoplethysmography. All subjects followed the same instructions split into 16 stages. In the experienced meditators group we identified two subgroups with different physiological markers dynamics. One subgroup showed several signs of general relaxation evident from the changes in heart rate variability, respiratory rate, and EEG rhythmic activity. The other subgroup exhibited mind concentration patterns primarily noticeable in the EEG recordings while no autonomic responses occurred. The duration and type of previous meditation experience or any baseline indicators we measured did not explain the segregation of the meditators into these two groups. These results suggest that two distinct meditation strategies could be used by experienced meditators, which partly explains the inconsistent results reported in the earlier studies evaluating meditation effects. Our findings are also relevant to the development of the high-end biofeedback systems.


Assuntos
Sistema Nervoso Autônomo , Meditação , Adulto , Resposta Galvânica da Pele , Humanos , Adulto Jovem
11.
J Neural Eng ; 18(2)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33524962

RESUMO

Objective.Brain-computer interfaces (BCIs) decode information from neural activity and send it to external devices. The use of Deep Learning approaches for decoding allows for automatic feature engineering within the specific decoding task. Physiologically plausible interpretation of the network parameters ensures the robustness of the learned decision rules and opens the exciting opportunity for automatic knowledge discovery.Approach.We describe a compact convolutional network-based architecture for adaptive decoding of electrocorticographic (ECoG) data into finger kinematics. We also propose a novel theoretically justified approach to interpreting the spatial and temporal weights in the architectures that combine adaptation in both space and time. The obtained spatial and frequency patterns characterizing the neuronal populations pivotal to the specific decoding task can then be interpreted by fitting appropriate spatial and dynamical models.Main results.We first tested our solution using realistic Monte-Carlo simulations. Then, when applied to the ECoG data from Berlin BCI competition IV dataset, our architecture performed comparably to the competition winners without requiring explicit feature engineering. Using the proposed approach to the network weights interpretation we could unravel the spatial and the spectral patterns of the neuronal processes underlying the successful decoding of finger kinematics from an ECoG dataset. Finally we have also applied the entire pipeline to the analysis of a 32-channel EEG motor-imagery dataset and observed physiologically plausible patterns specific to the task.Significance.We described a compact and interpretable CNN architecture derived from the basic principles and encompassing the knowledge in the field of neural electrophysiology. For the first time in the context of such multibranch architectures with factorized spatial and temporal processing we presented theoretically justified weights interpretation rules. We verified our recipes using simulations and real data and demonstrated that the proposed solution offers a good decoder and a tool for investigating motor control neural mechanisms.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Algoritmos , Eletrocorticografia , Eletroencefalografia/métodos , Dedos , Redes Neurais de Computação
12.
J Neural Eng ; 17(6)2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33166941

RESUMO

Objective.Feedback latency was shown to be a critical parameter in a range of applications that imply learning. The therapeutic effects of neurofeedback (NFB) remain controversial. We hypothesized that often encountered unreliable results of NFB intervention could be associated with large feedback latency values that are often uncontrolled and may preclude the efficient learning.Approach.We engaged our subjects into a parietal alpha power unpregulating paradigm facilitated by visual NFB based on the individually extracted envelope of the alpha-rhythm at P4 electrode. NFB was displayed either as soon as electroencephalographic (EEG) envelope was processed, or with an extra 250 or 500 ms delay. The feedback training consisted of 15 two-minute long blocks interleaved with 15 s pauses. We have also recorded 2 min long baselines immediately before and after the training.Main results.The time course of NFB-induced changes in the alpha rhythm power clearly depended on NFB latency, as shown with the adaptive Neyman test. NFB had a strong effect on the alpha-spindle incidence rate, but not on their duration or amplitude. The sustained changes in alpha activity measured after the completion of NFB training were negatively correlated to latency, with the maximum change for the shortest tested latency and no change for the longest.Significance.Here we for the first time show that visual NFB of parietal EEG alpha-activity is efficient only when delivered to human subjects at short latency, which guarantees that NFB arrives when an alpha spindle is still ongoing. Such a considerable effect of NFB latency on the alpha-activity temporal structure could explain some of the previous inconsistent results, where latency was neither controlled nor documented. Clinical practitioners and manufacturers of NFB equipment should add latency to their specifications while enabling latency monitoring and supporting short-latency operations.


Assuntos
Neurorretroalimentação , Ritmo alfa , Eletroencefalografia/métodos , Humanos , Aprendizagem , Neurorretroalimentação/métodos
13.
J Neural Eng ; 17(4): 046022, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32289760

RESUMO

OBJECTIVE: The rapidly developing paradigm of closed-loop neuroscience has extensively employed brain rhythms as the signal forming real-time neurofeedback, triggering brain stimulation, or governing stimulus selection. However, the efficacy of brain rhythm contingent paradigms suffers from significant delays related to the process of extraction of oscillatory parameters from broad-band neural signals with conventional methods. To this end, real-time algorithms are needed that would shorten the delay while maintaining an acceptable speed-accuracy trade-off. APPROACH: Here we evaluated a family of techniques based on the application of the least-squares complex-valued filter (LSCF) design to real-time quantification of brain rhythms. These techniques allow for explicit optimization of the speed-accuracy trade-off when quantifying oscillatory patterns. We used EEG data collected from 10 human participants to systematically compare LSCF approach to the other commonly used algorithms. Each method being evaluated was optimized by scanning through the grid of its hyperparameters using independent data samples. MAIN RESULTS: When applied to the task of estimating oscillatory envelope and phase, the LSCF techniques outperformed in speed and accuracy both conventional Fourier transform and rectification based methods as well as more advanced techniques such as those that exploit autoregressive extrapolation of narrow-band filtered signals. When operating at zero latency, the weighted LSCF approach yielded 75% accuracy when detecting alpha-activity episodes, as defined by the amplitude crossing of the 95th-percentile threshold. SIGNIFICANCE: The LSCF approaches are easily applicable to low-delay quantification of brain rhythms. As such, these methods are useful in a variety of neurofeedback, brain-computer-interface and other experimental paradigms that require rapid monitoring of brain rhythms.


Assuntos
Interfaces Cérebro-Computador , Neurorretroalimentação , Algoritmos , Encéfalo , Eletroencefalografia , Humanos
14.
Front Neurosci ; 14: 604629, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343290

RESUMO

A P300 brain-computer interface (BCI) is a paradigm, where text characters are decoded from event-related potentials (ERPs). In a popular implementation, called P300 speller, a subject looks at a display where characters are flashing and selects one character by attending to it. The selection is recognized as the item with the strongest ERP. The speller performs well when cortical responses to target and non-target stimuli are sufficiently different. Although many strategies have been proposed for improving the BCI spelling, a relatively simple one received insufficient attention in the literature: reduction of the visual field to diminish the contribution from non-target stimuli. Previously, this idea was implemented in a single-stimulus switch that issued an urgent command like stopping a robot. To tackle this approach further, we ran a pilot experiment where ten subjects operated a traditional P300 speller or wore a binocular aperture that confined their sight to the central visual field. As intended, visual field restriction resulted in a replacement of non-target ERPs with EEG rhythms asynchronous to stimulus periodicity. Changes in target ERPs were found in half of the subjects and were individually variable. While classification accuracy was slightly better for the aperture condition (84.3 ± 2.9%, mean ± standard error) than the no-aperture condition (81.0 ± 2.6%), this difference was not statistically significant for the entire sample of subjects (N = 10). For both the aperture and no-aperture conditions, classification accuracy improved over 4 days of training, more so for the aperture condition (from 72.0 ± 6.3% to 87.0 ± 3.9% and from 72.0 ± 5.6% to 97.0 ± 2.2% for the no-aperture and aperture conditions, respectively). Although in this study BCI performance was not substantially altered, we suggest that with further refinement this approach could speed up BCI operations and reduce user fatigue. Additionally, instead of wearing an aperture, non-targets could be removed algorithmically or with a hybrid interface that utilizes an eye tracker. We further discuss how a P300 speller could be improved by taking advantage of the different physiological properties of the central and peripheral vision. Finally, we suggest that the proposed experimental approach could be used in basic research on the mechanisms of visual processing.

15.
Front Neuroinform ; 13: 74, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849632

RESUMO

Electrocorticography (ECoG) holds promise to provide efficient neuroprosthetic solutions for people suffering from neurological disabilities. This recording technique combines adequate temporal and spatial resolution with the lower risks of medical complications compared to the other invasive methods. ECoG is routinely used in clinical practice for preoperative cortical mapping in epileptic patients. During the last two decades, research utilizing ECoG has considerably grown, including the paradigms where behaviorally relevant information is extracted from ECoG activity with decoding algorithms of different complexity. Several research groups have advanced toward the development of assistive devices driven by brain-computer interfaces (BCIs) that decode motor commands from multichannel ECoG recordings. Here we review the evolution of this field and its recent tendencies, and discuss the potential areas for future development.

16.
Sci Rep ; 9(1): 18978, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31831758

RESUMO

Back in 2012, Churchland and his colleagues proposed that "rotational dynamics", uncovered through linear transformations of multidimensional neuronal data, represent a fundamental type of neuronal population processing in a variety of organisms, from the isolated leech central nervous system to the primate motor cortex. Here, we evaluated this claim using Churchland's own data and simple simulations of neuronal responses. We observed that rotational patterns occurred in neuronal populations when (1) there was a temporal sequence in peak firing rates exhibited by individual neurons, and (2) this sequence remained consistent across different experimental conditions. Provided that such a temporal order of peak firing rates existed, rotational patterns could be easily obtained using a rather arbitrary computer simulation of neural activity; modeling of any realistic properties of motor cortical responses was not needed. Additionally, arbitrary traces, such as Lissajous curves, could be easily obtained from Churchland's data with multiple linear regression. While these observations suggest that temporal sequences of neuronal responses could be visualized as rotations with various methods, we express doubt about Churchland et al.'s bold assessment that such rotations are related to "an unexpected yet surprisingly simple structure in the population response", which "explains many of the confusing features of individual neural responses". Instead, we argue that their approach provides little, if any, insight on the underlying neuronal mechanisms employed by neuronal ensembles to encode motor behaviors in any species.


Assuntos
Simulação por Computador , Modelos Neurológicos , Córtex Motor/fisiologia , Neurônios/fisiologia , Animais , Haplorrinos , Córtex Motor/citologia , Neurônios/citologia
17.
J Neural Eng ; 15(1): 016004, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28718781

RESUMO

OBJECTIVE: Brain-computer interface (BCI) systems are known to be vulnerable to variabilities in background states of a user. Usually, no detailed information on these states is available even during the training stage. Thus there is a need in a method which is capable of taking background states into account in an unsupervised way. APPROACH: We propose a latent variable method that is based on a probabilistic model with a discrete latent variable. In order to estimate the model's parameters, we suggest to use the expectation maximization algorithm. The proposed method is aimed at assessing characteristics of background states without any corresponding data labeling. In the context of asynchronous motor imagery paradigm, we applied this method to the real data from twelve able-bodied subjects with open/closed eyes serving as background states. MAIN RESULTS: We found that the latent variable method improved classification of target states compared to the baseline method (in seven of twelve subjects). In addition, we found that our method was also capable of background states recognition (in six of twelve subjects). SIGNIFICANCE: Without any supervised information on background states, the latent variable method provides a way to improve classification in BCI by taking background states into account at the training stage and then by making decisions on target states weighted by posterior probabilities of background states at the prediction stage.


Assuntos
Adaptação Fisiológica/fisiologia , Interfaces Cérebro-Computador , Imaginação/fisiologia , Modelos Estatísticos , Movimento/fisiologia , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
18.
Front Behav Neurosci ; 12: 98, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29922134

RESUMO

According to the currently prevailing theory, hippocampal formation constructs and maintains cognitive spatial maps. Most of the experimental evidence for this theory comes from the studies on navigation in laboratory rats and mice, typically male animals. While these animals exhibit a rich repertoire of behaviors associated with navigation, including locomotion, head movements, whisking, sniffing, raring and scent marking, the contribution of these behavioral patterns to the hippocampal spatially-selective activity has not been sufficiently studied. Instead, many publications have considered animal position in space as the major variable that affects the firing of hippocampal place cells and entorhinal grid cells. Here we argue that future work should focus on a more detailed examination of different behaviors exhibited during navigation to better understand the mechanism of spatial tuning in hippocampal neurons. As an inquiry in this direction, we have analyzed data from two datasets, shared online, containing recordings from rats navigating in square and round arenas. Our analyses revealed patchy navigation patterns, evident from the spatial maps of animal position, velocity and acceleration. Moreover, grid cells available in the datasets exhibited similar periodicity as the navigation parameters. These findings indicate that activity of grid cells could affect navigation parameters and/or vice versa. Additionally, we speculate that scent marks left by navigating animals could contribute to neuronal responses while rats and mice sniff their environment; the act of sniffing could modulate neuronal discharges even in virtual visual environments. Accordingly, we propose that future experiments should contain additional controls for navigation patterns, whisking, sniffing and maps composed of scent marks.

19.
Front Neuroinform ; 12: 100, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30618704

RESUMO

Neurofeedback (NFB) is a real-time paradigm, where subjects learn to volitionally modulate their own brain activity recorded with electroencephalographic (EEG), magnetoencephalographic (MEG) or other functional brain imaging techniques and presented to them via one of sensory modalities: visual, auditory or tactile. NFB has been proposed as an approach to treat neurological conditions and augment brain functions. Although the early NFB studies date back nearly six decades ago, there is still much debate regarding the efficiency of this approach and the ways it should be implemented. Partly, the existing controversy is due to suboptimal conditions under which the NFB training is undertaken. Therefore, new experimental tools attempting to provide optimal or close to optimal training conditions are needed to further exploration of NFB paradigms and comparison of their effects across subjects and training days. To this end, we have developed open-source NFBLab, a versatile, Python-based software for conducting NFB experiments with completely reproducible paradigms and low-latency feedback presentation. Complex experimental protocols can be configured using the GUI and saved in NFBLab's internal XML-based language that describes signal processing tracts, experimental blocks and sequences including randomization of experimental blocks. NFBLab implements interactive modules that enable individualized EEG/MEG signal processing tracts specification using spatial and temporal filters for feature selection and artifacts removal. NFBLab supports direct interfacing to MNE-Python software to facilitate source-space NFB based on individual head models and properly tailored individual inverse solvers. In addition to the standard algorithms for extraction of brain rhythms dynamics from EEG and MEG data, NFBLab implements several novel in-house signal processing algorithms that afford significant reduction in latency of feedback presentation and may potentially improve training effects. The software also supports several standard BCI paradigms. To interface with external data acquisition devices NFBLab employs Lab Streaming Layer protocol supported by the majority of EEG vendors. MEG devices are interfaced through the Fieldtrip buffer.

20.
Front Neurosci ; 11: 10, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28167897

RESUMO

Humans often adjust their opinions to the perceived opinions of others. Neural responses to a perceived match or mismatch between individual and group opinions have been investigated previously, but some findings are inconsistent. In this study, we used magnetoencephalographic source imaging to investigate further neural responses to the perceived opinions of others. We found that group opinions mismatching with individual opinions evoked responses in the anterior and posterior medial prefrontal cortices, as well as in the temporoparietal junction and ventromedial prefrontal cortex in the 220-320 and 380-530 ms time windows. Evoked responses were accompanied by an increase in the power of theta oscillations (4-8 Hz) over a number of frontal cortical sites. Group opinions matching with individual opinions evoked an increase in amplitude of beta oscillations (13-30 Hz) in the anterior cingulate and ventral medial prefrontal cortices. Based on these results, we argue that distinct valuation and performance-monitoring neural circuits in the medial cortices of the brain may monitor compliance of individual behavior to the perceived group norms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA