Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 35(35): 12088-102, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26338321

RESUMO

Loss of vision in glaucoma results from the selective death of retinal ganglion cells (RGCs). Tumor necrosis factor α (TNFα) signaling has been linked to RGC damage, however, the mechanism by which TNFα promotes neuronal death remains poorly defined. Using an in vivo rat glaucoma model, we show that TNFα is upregulated by Müller cells and microglia/macrophages soon after induction of ocular hypertension. Administration of XPro1595, a selective inhibitor of soluble TNFα, effectively protects RGC soma and axons. Using cobalt permeability assays, we further demonstrate that endogenous soluble TNFα triggers the upregulation of Ca(2+)-permeable AMPA receptor (CP-AMPAR) expression in RGCs of glaucomatous eyes. CP-AMPAR activation is not caused by defects in GluA2 subunit mRNA editing, but rather reflects selective downregulation of GluA2 in neurons exposed to elevated eye pressure. Intraocular administration of selective CP-AMPAR blockers promotes robust RGC survival supporting a critical role for non-NMDA glutamate receptors in neuronal death. Our study identifies glia-derived soluble TNFα as a major inducer of RGC death through activation of CP-AMPARs, thereby establishing a novel link between neuroinflammation and cell loss in glaucoma. SIGNIFICANCE STATEMENT: Tumor necrosis factor α (TNFα) has been implicated in retinal ganglion cell (RGC) death, but how TNFα exerts this effect is poorly understood. We report that ocular hypertension, a major risk factor in glaucoma, upregulates TNFα production by Müller cells and microglia. Inhibition of soluble TNFα using a dominant-negative strategy effectively promotes RGC survival. We find that TNFα stimulates the expression of calcium-permeable AMPA receptors (CP-AMPAR) in RGCs, a response that does not depend on abnormal GluA2 mRNA editing but on selective downregulation of the GluA2 subunit by these neurons. Consistent with this, CP-AMPAR blockers promote robust RGC survival supporting a critical role for non-NMDA glutamate receptors in glaucomatous damage. This study identifies a novel mechanism by which glia-derived soluble TNFα modulates neuronal death in glaucoma.


Assuntos
Cálcio/metabolismo , Glaucoma/patologia , Receptores de AMPA/metabolismo , Células Ganglionares da Retina/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/efeitos dos fármacos , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Morte Celular/efeitos dos fármacos , Colina O-Acetiltransferase/metabolismo , Cobalto/metabolismo , Modelos Animais de Doenças , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/metabolismo , Glaucoma/induzido quimicamente , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Ratos , Receptores de AMPA/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Solução Salina Hipertônica/toxicidade , Fator de Necrose Tumoral alfa/farmacologia , Regulação para Cima/fisiologia
2.
Eur J Neurosci ; 35(8): 1201-7, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22512252

RESUMO

Ca(2+) and/or Zn(2+) entry into neurons and glial cells is often a key step driving the processes of neurodevelopment and disease. As a result, a major pre-occupation of many neuroscientists has been in tracking down when and where nervous tissues express ion channels with appreciable divalent ion permeability. The cobalt (Co(2+))-staining technique is one of the few techniques that allow a snapshot of the entire neuronal circuit, and selectively labels cells expressing divalent-permeable ion channels with a brown-black precipitate. Despite this, its use has been remarkably limited in the past decade. Reluctance to employ this approach has largely been related to an earlier concern with obtaining a reliable and reproducible means of visualizing transported Co(2+). Here we show that recent advances have resolved these issues, opening this straightforward and valuable technique to a much larger neuroscience audience.


Assuntos
Cobalto , Canais Iônicos/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Coloração e Rotulagem , Animais , Células Cultivadas , Rede Nervosa/citologia , Rede Nervosa/metabolismo , Neuroglia/ultraestrutura , Neurônios/ultraestrutura , Permeabilidade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Coloração pela Prata , Coloração e Rotulagem/métodos
3.
J Physiol ; 582(Pt 1): 95-111, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17430992

RESUMO

Ca2+-permeable AMPA receptors (AMPARs) are expressed throughout the adult CNS but yet their role in development is poorly understood. In the developing retina, most investigations have focused on Ca2+ influx through NMDARs in promoting synapse maturation and not on AMPARs. However, NMDARs are absent from many retinal cells suggesting that other Ca2+-permeable glutamate receptors may be important to consider. Here we show that inhibitory horizontal and AII amacrine cells lack NMDARs but express Ca2+-permeable AMPARs. Before eye-opening, AMPARs were fully blocked by philanthotoxin (PhTX), a selective antagonist of Ca2+-permeable AMPARs. After eye-opening, however, a subpopulation of Ca2+-permeable AMPARs were unexpectedly PhTX resistant. Furthermore, Joro spider toxin (JSTX) and IEM-1460 also failed to antagonize, demonstrating that this novel pharmacology is shared by several AMPAR channel blockers. Interestingly, PhTX-insensitive AMPARs failed to express in retinae from dark-reared animals demonstrating that light entering the eye triggers their expression. Eye-opening coincides with the consolidation of inhibitory cell connections suggesting that the developmental switch to a Ca2+-permeable AMPAR with novel pharmacology may be critical to synapse maturation in the mammalian retina.


Assuntos
Células Amácrinas/efeitos da radiação , Cálcio/metabolismo , Luz , Fenóis/farmacologia , Poliaminas/farmacologia , Receptores de AMPA/efeitos da radiação , Retina/efeitos da radiação , Células Horizontais da Retina/efeitos da radiação , Vias Visuais/efeitos da radiação , Adaptação Ocular , Envelhecimento/metabolismo , Células Amácrinas/efeitos dos fármacos , Células Amácrinas/crescimento & desenvolvimento , Células Amácrinas/metabolismo , Animais , Animais Recém-Nascidos , Adaptação à Escuridão , Feminino , Técnicas In Vitro , Cinética , Masculino , Potenciais da Membrana/efeitos da radiação , Inibição Neural/efeitos da radiação , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/efeitos dos fármacos , Receptores de AMPA/metabolismo , Retina/efeitos dos fármacos , Retina/crescimento & desenvolvimento , Retina/metabolismo , Células Horizontais da Retina/efeitos dos fármacos , Células Horizontais da Retina/crescimento & desenvolvimento , Células Horizontais da Retina/metabolismo , Sinapses/metabolismo , Sinapses/efeitos da radiação , Transmissão Sináptica/efeitos da radiação , Vias Visuais/efeitos dos fármacos , Vias Visuais/crescimento & desenvolvimento , Vias Visuais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA