Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Am J Pathol ; 192(3): 410-425, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34954211

RESUMO

Histopathologic evidence of deployment-related constrictive bronchiolitis (DRCB) has been identified in soldiers deployed to Southwest Asia. While inhalational injury to the airway epithelium is suspected, relatively little is known about the pathogenesis underlying this disabling disorder. Club cells are local progenitors critical for repairing the airway epithelium after exposure to various airborne toxins, and a prior study using an inducible transgenic murine model reported that 10 days of sustained targeted club cell injury causes constrictive bronchiolitis. To further understand the mechanisms leading to small airway fibrosis, a murine model was employed to show that sustained club cell injury elicited acute weight loss, caused increased local production of proinflammatory cytokines, and promoted accumulation of numerous myeloid cell subsets in the lung. Transition to a chronic phase was characterized by up-regulated expression of oxidative stress-associated genes, increased activation of transforming growth factor-ß, accumulation of alternatively activated macrophages, and enhanced peribronchiolar collagen deposition. Comparative histopathologic analysis demonstrated that sustained club cell injury was sufficient to induce epithelial metaplasia, airway wall thickening, peribronchiolar infiltrates, and clusters of intraluminal airway macrophages that recapitulated key abnormalities observed in DRCB. Depletion of alveolar macrophages in mice decreased activation of transforming growth factor-ß and ameliorated constrictive bronchiolitis. Collectively, these findings implicate sustained club cell injury in the development of DRCB and delineate pathways that may yield biomarkers and treatment targets for this disorder.


Assuntos
Bronquiolite Obliterante , Animais , Bronquíolos/patologia , Bronquiolite Obliterante/patologia , Modelos Animais de Doenças , Pulmão/patologia , Camundongos , Fator de Crescimento Transformador beta/metabolismo , Fatores de Crescimento Transformadores/metabolismo
2.
Respir Res ; 24(1): 314, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38098035

RESUMO

Recent data from human studies and animal models have established roles for type II alveolar epithelial cell (AEC2) injury/apoptosis and monocyte/macrophage accumulation and activation in progressive lung fibrosis. Although the link between these processes is not well defined, we have previously shown that CD36-mediated uptake of apoptotic AEC2s by lung macrophages is sufficient to drive fibrosis. Importantly, apoptotic AEC2s are rich in oxidized phospholipids (oxPL), and amongst its multiple functions, CD36 serves as a scavenger receptor for oxPL. Recent studies have established a role for oxPLs in alveolar scarring, and we hypothesized that uptake and accrual of oxPL by CD36 would cause a macrophage phenotypic change that promotes fibrosis. To test this hypothesis, we treated wild-type and CD36-null mice with the oxPL derivative oxidized phosphocholine (POVPC) and found that CD36-null mice were protected from oxPL-induced scarring. Compared to WT mice, fewer macrophages accumulated in the lungs of CD36-null animals, and the macrophages exhibited a decreased accumulation of intracellular oxidized lipid. Importantly, the attenuated accrual of oxPL in CD36-null macrophages was associated with diminished expression of the profibrotic mediator, TGFß. Finally, the pathway linking oxPL uptake and TGFß expression was found to require CD36-mediated activation of Lyn kinase. Together, these observations elucidate a causal pathway that connects AEC2 injury with lung macrophage activation via CD36-mediated uptake of oxPL and suggest several potential therapeutic targets.


Assuntos
Fibrose Pulmonar , Camundongos , Humanos , Animais , Fibrose Pulmonar/metabolismo , Fosfolipídeos/metabolismo , Cicatriz/metabolismo , Macrófagos/metabolismo , Camundongos Knockout , Fibrose , Fator de Crescimento Transformador beta/metabolismo
3.
Am J Respir Cell Mol Biol ; 62(5): 622-632, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31922885

RESUMO

Accumulating evidence suggests that fibrosis is a multicellular process with contributions from alveolar epithelial cells (AECs), recruited monocytes/macrophages, and fibroblasts. We have previously shown that AEC injury is sufficient to induce fibrosis, but the precise mechanism remains unclear. Several cell types, including AECs, can produce CCL2 and CCL12, which can promote fibrosis through CCR2 activation. CCR2 signaling is critical for the initiation and progression of pulmonary fibrosis, in part through recruitment of profibrotic bone marrow-derived monocytes. Attempts at inhibiting CCL2 in patients with fibrosis demonstrated a marked upregulation of CCL2 production and no therapeutic response. To better understand the mechanisms involved in CCL2/CCR2 signaling, we generated mice with conditional deletion of CCL12, a murine homolog of human CCL2. Surprisingly, we found that mice with complete deletion of CCL12 had markedly increased concentrations of other CCR2 ligands and were not protected from fibrosis after bleomycin injury. In contrast, mice with lung epithelial cell-specific deletion of CCL12 were protected from bleomycin-induced fibrosis and had expression of CCL2 and CCL7 similar to that of control mice treated with bleomycin. Deletion of CCL12 within AECs led to decreased recruitment of exudate macrophages. Finally, injury to murine and human primary AECs resulted in increased production of CCL2 and CCL12, in part through activation of the mTOR pathway. In conclusion, these data suggest that targeting CCL2 may be a viable antifibrotic strategy once the pathways involved in the production and function of CCL2 and other CCR2 ligands are better defined.


Assuntos
Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Quimiocina CCL2/metabolismo , Lesão Pulmonar/complicações , Proteínas Quimioatraentes de Monócitos/metabolismo , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/metabolismo , Animais , Deleção de Genes , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Proteína Regulatória Associada a mTOR/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
4.
N Engl J Med ; 386(14): 1352-1357, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35388671
5.
J Immunol ; 201(7): 2004-2015, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30097531

RESUMO

The substantial morbidity and mortality caused by invasive fungal pathogens, including Cryptococcus neoformans, necessitates increased understanding of protective immune responses against these infections. Our previous work using murine models of cryptococcal lung infection demonstrated that dendritic cells (DCs) orchestrate critical transitions from innate to adaptive immunity and that IL-10 signaling blockade improves fungal clearance. To further understand interrelationships among IL-10 production, fungal clearance, and the effect of IL-10 on lung DCs, we performed a comparative temporal analysis of cryptococcal lung infection in wild type C57BL/6J mice (designated IL-10+/+) and IL-10-/- mice inoculated intratracheally with C. neoformans (strain 52D). Early and sustained IL-10 production by lung leukocytes was associated with persistent infection in IL-10+/+ mice, whereas fungal clearance was improved in IL-10-/- mice during the late adaptive phase of infection. Numbers of monocyte-derived DCs, T cells, and alveolar and exudate macrophages were increased in lungs of IL-10-/- versus IL-10+/+ mice concurrent with evidence of enhanced DC type-1, Th1/Th17 CD4 cell, and classical macrophage activation. Bone marrow-derived DCs stimulated with cryptococcal mannoproteins, a component of the fungal capsule, upregulated expression of IL-10 and IL-10R, which promoted DC type-2 activation in an autocrine manner. Thus, our findings implicate fungus-triggered autocrine IL-10 signaling and DC type-2 activation as important contributors to the development of nonprotective immune effector responses, which characterize persistent cryptococcal lung infection. Collectively, this study informs and strengthens the rationale for IL-10 signaling blockade as a novel treatment for fungal infections.


Assuntos
Criptococose/imunologia , Cryptococcus neoformans/fisiologia , Células Dendríticas/imunologia , Inflamação/imunologia , Interleucina-10/metabolismo , Pneumopatias Fúngicas/imunologia , Pulmão/imunologia , Animais , Comunicação Autócrina , Modelos Animais de Doenças , Humanos , Interleucina-10/genética , Pulmão/microbiologia , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Células Th2/imunologia
6.
J Immunol ; 199(10): 3535-3546, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29038249

RESUMO

Activation of immunomodulatory pathways in response to invasive fungi can impair clearance and promote persistent infections. The programmed cell death protein-1 (PD-1) signaling pathway inhibits immune effector responses against tumors, and immune checkpoint inhibitors that block this pathway are being increasingly used as cancer therapy. The objective of this study was to investigate whether this pathway contributes to persistent fungal infection and to determine whether anti-PD-1 Ab treatment improves fungal clearance. Studies were performed using C57BL/6 mice infected with a moderately virulent strain of Cryptococcus neoformans (52D), which resulted in prolonged elevations in fungal burden and histopathologic evidence of chronic lung inflammation. Persistent infection was associated with increased and sustained expression of PD-1 on lung lymphocytes, including a mixed population of CD4+ T cells. In parallel, expression of the PD-1 ligands, PD-1 ligands 1 and 2, was similarly upregulated on specific subsets of resident and recruited lung dendritic cells and macrophages. Treatment of persistently infected mice for 4 wk by repetitive administration of neutralizing anti-PD-1 Ab significantly improved pulmonary fungal clearance. Treatment was well tolerated without evidence of morbidity. Immunophenotyping revealed that anti-PD-1 Ab treatment did not alter immune effector cell numbers or myeloid cell activation. Treatment did reduce gene expression of IL-5 and IL-10 by lung leukocytes and promoted sustained upregulation of OX40 by Th1 and Th17 cells. Collectively, this study demonstrates that PD-1 signaling promotes persistent cryptococcal lung infection and identifies this pathway as a potential target for novel immune-based treatments of chronic fungal disease.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Criptococose/terapia , Cryptococcus neoformans/imunologia , Imunoterapia/métodos , Pulmão/imunologia , Receptor de Morte Celular Programada 1/imunologia , Células Th1/efeitos dos fármacos , Animais , Contagem de Colônia Microbiana , Criptococose/imunologia , Cryptococcus neoformans/patogenicidade , Citocinas/metabolismo , Feminino , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Células Th1/imunologia , Virulência
7.
J Immunol ; 198(9): 3548-3557, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28298522

RESUMO

The scavenger receptor macrophage receptor with collagenous structure (MARCO) promotes protective innate immunity against bacterial and parasitic infections; however, its role in host immunity against fungal pathogens, including the major human opportunistic fungal pathogen Cryptococcus neoformans, remains unknown. Using a mouse model of C. neoformans infection, we demonstrated that MARCO deficiency leads to impaired fungal control during the afferent phase of cryptococcal infection. Diminished fungal containment in MARCO-/- mice was accompanied by impaired recruitment of Ly6Chigh monocytes and monocyte-derived dendritic cells (moDC) and lower moDC costimulatory maturation. The reduced recruitment and activation of mononuclear phagocytes in MARCO-/- mice was linked to diminished early expression of IFN-γ along with profound suppression of CCL2 and CCL7 chemokines, providing evidence for roles of MARCO in activation of the CCR2 axis during C. neoformans infection. Lastly, we found that MARCO was involved in C. neoformans phagocytosis by resident pulmonary macrophages and DC. We conclude that MARCO facilitates early interactions between C. neoformans and lung-resident cells and promotes the production of CCR2 ligands. In turn, this contributes to a more robust recruitment and activation of moDC that opposes rapid fungal expansion during the afferent phase of cryptococcal infection.


Assuntos
Criptococose/imunologia , Cryptococcus neoformans/fisiologia , Células Dendríticas/imunologia , Pneumopatias Fúngicas/imunologia , Macrófagos/imunologia , Receptores Imunológicos/metabolismo , Receptores Depuradores/metabolismo , Animais , Células Cultivadas , Quimiocina CCL7/metabolismo , Células Dendríticas/microbiologia , Modelos Animais de Doenças , Humanos , Imunidade Inata , Interferon gama/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagocitose , Receptores Imunológicos/genética , Receptores Depuradores/genética
8.
J Immunol ; 199(2): 643-655, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28615417

RESUMO

Cryptococcus neoformans is a ubiquitous, opportunistic fungal pathogen but the cell signaling pathways that drive T cell responses regulating antifungal immunity are incompletely understood. Notch is a key signaling pathway regulating T cell development, and differentiation and functional responses of mature T cells in the periphery. The targeting of Notch signaling within T cells has been proposed as a potential treatment for alloimmune and autoimmune disorders, but it is unknown whether disturbances to T cell immunity may render these patients vulnerable to fungal infections. To elucidate the role of Notch signaling during fungal infections, we infected mice expressing the pan-Notch inhibitor dominant negative mastermind-like within mature T cells with C. neoformans Inhibition of T cell-restricted Notch signaling increased fungal burdens in the lungs and CNS, diminished pulmonary leukocyte recruitment, and simultaneously impaired Th1 and Th2 responses. Pulmonary leukocyte cultures from T cell Notch-deprived mice produced less IFN-γ, IL-5, and IL-13 than wild-type cells. This correlated with lower frequencies of IFN-γ-, IL-5-, and IL-13-producing CD4+ T cells, reduced expression of Th1 and Th2 associated transcription factors, Tbet and GATA3, and reduced production of IFN-γ by CD8+ T cells. In contrast, Th17 responses were largely unaffected by Notch signaling. The changes in T cell responses corresponded with impaired macrophage activation and reduced leukocyte accumulation, leading to diminished fungal control. These results identify Notch signaling as a previously unappreciated regulator of Th1 and Th2 immunity and an important element of antifungal defenses against cryptococcal infection and CNS dissemination.


Assuntos
Criptococose/imunologia , Cryptococcus neoformans/imunologia , Receptores Notch/metabolismo , Animais , Antígenos de Fungos/imunologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Sistema Nervoso Central/parasitologia , Criptococose/microbiologia , Fator de Transcrição GATA3/metabolismo , Interferon gama/biossíntese , Interferon gama/imunologia , Interleucina-13/biossíntese , Interleucina-13/imunologia , Interleucina-5/biossíntese , Interleucina-5/imunologia , Pulmão/parasitologia , Ativação de Macrófagos , Camundongos , Receptores Notch/deficiência , Transdução de Sinais , Células Th1/imunologia , Células Th17/imunologia , Células Th2/imunologia
9.
J Immunol ; 196(4): 1810-21, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26755822

RESUMO

Patients with acquired deficiency in GM-CSF are susceptible to infections with Cryptococcus neoformans and other opportunistic fungi. We previously showed that GM-CSF protects against progressive fungal disease using a murine model of cryptococcal lung infection. To better understand the cellular and molecular mechanisms through which GM-CSF enhances antifungal host defenses, we investigated temporal and spatial relationships between myeloid and lymphoid immune responses in wild-type C57BL/6 mice capable of producing GM-CSF and GM-CSF-deficient mice infected with a moderately virulent encapsulated strain of C. neoformans (strain 52D). Our data demonstrate that GM-CSF deficiency led to a reduction in: 1) total lung leukocyte recruitment; 2) Th2 and Th17 responses; 3) total numbers of CD11b(+) dendritic cells (DC) and CD11b(-) and CD11b(+) macrophages (Mϕ); 4) DC and Mϕ activation; and 5) localization of DC and Mϕ to the microanatomic sites of alveolar infection. In contrast, GM-CSF deficiency resulted in increased accumulation of DC and Mϕ precursors, namely Ly-6C(high) monocytes, in the blood and lungs of infected mice. Collectively, these results show that GM-CSF promotes the local differentiation, accumulation, activation, and alveolar localization of lung DC and Mϕ in mice with cryptococcal lung infection. These findings identify GM-CSF as central to the protective immune response that prevents progressive fungal disease and thus shed new light on the increased susceptibility to these infections observed in patients with acquired GM-CSF deficiency.


Assuntos
Criptococose/imunologia , Células Dendríticas/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Pneumopatias Fúngicas/imunologia , Macrófagos/imunologia , Animais , Diferenciação Celular/imunologia , Cryptococcus neoformans/imunologia , Modelos Animais de Doenças , Citometria de Fluxo , Imunofluorescência , Ativação de Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real
11.
J Immunol ; 194(5): 2219-31, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25637026

RESUMO

Upon ingestion by macrophages, Cryptococcus neoformans can survive and replicate intracellularly unless the macrophages become classically activated. The mechanism enabling intracellular replication is not fully understood; neither are the mechanisms that allow classical activation to counteract replication. C. neoformans-induced lysosome damage was observed in infected murine bone marrow-derived macrophages, increased with time, and required yeast viability. To demonstrate lysosome damage in the infected host, we developed a novel flow cytometric method for measuring lysosome damage. Increased lysosome damage was found in C. neoformans-containing lung cells compared with C. neoformans-free cells. Among C. neoformans-containing myeloid cells, recently recruited cells displayed lower damage than resident cells, consistent with the protective role of recruited macrophages. The magnitude of lysosome damage correlated with increased C. neoformans replication. Experimental induction of lysosome damage increased C. neoformans replication. Activation of macrophages with IFN-γ abolished macrophage lysosome damage and enabled increased killing of C. neoformans. We conclude that induction of lysosome damage is an important C. neoformans survival strategy and that classical activation of host macrophages counters replication by preventing damage. Thus, therapeutic strategies that decrease lysosomal damage, or increase resistance to such damage, could be valuable in treating cryptococcal infections.


Assuntos
Criptococose/tratamento farmacológico , Cryptococcus neoformans/patogenicidade , Interferon gama/farmacologia , Pneumopatias Fúngicas/tratamento farmacológico , Lisossomos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Animais , Criptococose/imunologia , Criptococose/microbiologia , Criptococose/patologia , Cryptococcus neoformans/imunologia , Interações Hospedeiro-Patógeno , Luz , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Pneumopatias Fúngicas/imunologia , Pneumopatias Fúngicas/microbiologia , Pneumopatias Fúngicas/patologia , Lisossomos/microbiologia , Lisossomos/patologia , Lisossomos/efeitos da radiação , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Processos Fotoquímicos , Cultura Primária de Células , Virulência
12.
J Immunol ; 194(12): 5999-6010, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25972480

RESUMO

Numerous virulence factors expressed by Cryptococcus neoformans modulate host defenses by promoting nonprotective Th2-biased adaptive immune responses. Prior studies demonstrate that the heat shock protein 70 homolog, Ssa1, significantly contributes to serotype D C. neoformans virulence through the induction of laccase, a Th2-skewing and CNS tropic factor. In the present study, we sought to determine whether Ssa1 modulates host defenses in mice infected with a highly virulent serotype A strain of C. neoformans (H99). To investigate this, we assessed pulmonary fungal growth, CNS dissemination, and survival in mice infected with either H99, an SSA1-deleted H99 strain (Δssa1), and a complement strain with restored SSA1 expression (Δssa1::SSA1). Mice infected with the Δssa1 strain displayed substantial reductions in lung fungal burden during the innate phase (days 3 and 7) of the host response, whereas less pronounced reductions were observed during the adaptive phase (day 14) and mouse survival increased only by 5 d. Surprisingly, laccase activity assays revealed that Δssa1 was not laccase deficient, demonstrating that H99 does not require Ssa1 for laccase expression, which explains the CNS tropism we still observed in the Ssa1-deficient strain. Lastly, our immunophenotyping studies showed that Ssa1 directly promotes early M2 skewing of lung mononuclear phagocytes during the innate phase, but not the adaptive phase, of the immune response. We conclude that Ssa1's virulence mechanism in H99 is distinct and laccase-independent. Ssa1 directly interferes with early macrophage polarization, limiting innate control of C. neoformans, but ultimately has no effect on cryptococcal control by adaptive immunity.


Assuntos
Criptococose/imunologia , Criptococose/metabolismo , Cryptococcus neoformans/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Pneumopatias Fúngicas/imunologia , Pneumopatias Fúngicas/microbiologia , Macrófagos/imunologia , Imunidade Adaptativa , Animais , Encéfalo/metabolismo , Encéfalo/microbiologia , Encéfalo/patologia , Criptococose/mortalidade , Criptococose/patologia , Cryptococcus neoformans/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Regulação Fúngica da Expressão Gênica , Proteínas de Choque Térmico HSP70/genética , Imunidade Inata , Lacase/genética , Lacase/metabolismo , Leucócitos/imunologia , Leucócitos/patologia , Pneumopatias Fúngicas/mortalidade , Pneumopatias Fúngicas/patologia , Ativação de Macrófagos/imunologia , Camundongos , Mutação
13.
Eur Respir J ; 47(6): 1842-54, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27030681

RESUMO

Lung cancer and pulmonary fibrosis are common, yet distinct, pathological processes that represent urgent unmet medical needs. Striking clinical and mechanistic parallels exist between these distinct disease entities. The goal of this article is to examine lung fibrosis from the perspective of cancer-associated phenotypic hallmarks, to discuss areas of mechanistic overlap and distinction, and to highlight profibrotic mechanisms that contribute to carcinogenesis. Ultimately, we speculate that such comparisons might identify opportunities to leverage our current understanding of the pathobiology of each disease process in order to advance novel therapeutic approaches for both. We anticipate that such "outside the box" concepts could be translated to a more precise and individualised approach to fibrotic diseases of the lung.


Assuntos
Cicatriz/patologia , Fibroblastos/patologia , Fibrose Pulmonar Idiopática/patologia , Neoplasias Pulmonares/patologia , Pulmão/patologia , Animais , Autofagia , Carcinogênese , Proliferação de Células , Sobrevivência Celular , Epigênese Genética , Fibroblastos/citologia , Humanos , Inflamação , Pneumopatias/patologia , Camundongos , Metástase Neoplásica , Fenótipo , Medicina de Precisão , Transdução de Sinais
14.
Am J Pathol ; 185(6): 1564-74, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25848843

RESUMO

Bronchiolitis obliterans is the leading cause of chronic graft failure and long-term mortality in lung transplant recipients. Here, we used a novel murine model to characterize allograft fibrogenesis within a whole-lung microenvironment. Unilateral left lung transplantation was performed in mice across varying degrees of major histocompatibility complex mismatch combinations. B6D2F1/J (a cross between C57BL/6J and DBA/2J) (Haplotype H2b/d) lungs transplanted into DBA/2J (H2d) recipients were identified to show histopathology for bronchiolitis obliterans in all allogeneic grafts. Time course analysis showed an evolution from immune cell infiltration of the bronchioles and vessels at day 14, consistent with acute rejection and lymphocytic bronchitis, to subepithelial and intraluminal fibrotic lesions of bronchiolitis obliterans by day 28. Allografts at day 28 showed a significantly higher hydroxyproline content than the isografts (33.21 ± 1.89 versus 22.36 ± 2.33 µg/mL). At day 40 the hydroxyproline content had increased further (48.91 ± 7.09 µg/mL). Flow cytometric analysis was used to investigate the origin of mesenchymal cells in fibrotic allografts. Collagen I-positive cells (89.43% ± 6.53%) in day 28 allografts were H2Db positive, showing their donor origin. This novel murine model shows consistent and reproducible allograft fibrogenesis in the context of single-lung transplantation and represents a major step forward in investigating mechanisms of chronic graft failure.


Assuntos
Bronquiolite Obliterante/patologia , Rejeição de Enxerto/patologia , Transplante de Pulmão/efeitos adversos , Pulmão/patologia , Células-Tronco Mesenquimais/patologia , Animais , Bronquiolite Obliterante/etiologia , Bronquiolite Obliterante/imunologia , Modelos Animais de Doenças , Rejeição de Enxerto/imunologia , Pulmão/imunologia , Linfócitos/imunologia , Linfócitos/patologia , Macrófagos/imunologia , Macrófagos/patologia , Células-Tronco Mesenquimais/imunologia , Camundongos
15.
J Immunol ; 193(8): 4245-53, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25225663

RESUMO

The role and origin of alveolar macrophages (AMs) in asthma are incompletely defined. We sought to clarify these issues in the context of acute allergic lung inflammation using house dust mite and OVA murine models. Use of liposomal clodronate to deplete resident AMs (rAMs) resulted in increased levels of inflammatory cytokines and eosinophil numbers in lavage fluid and augmented the histopathologic evidence of lung inflammation, suggesting a suppressive role for rAMs. Lung digests of asthmatic mice revealed an increased percentage of Ly6C(high)/CD11b(pos) inflammatory monocytes. Clodronate depletion of circulating monocytes, by contrast, resulted in an attenuation of allergic inflammation. A CD45.1/CD45.2 chimera model demonstrated that recruitment at least partially contributes to the AM pool in irradiated nonasthmatic mice, but its contribution was no greater in asthma. Ki-67 staining of AMs supported a role for local proliferation, which was increased in asthma. Our data demonstrate that rAMs dampen, whereas circulating monocytes promote, early events in allergic lung inflammation. Moreover, maintenance of the AM pool in the early stages of asthmatic inflammation depends on local proliferation, but not recruitment.


Assuntos
Asma/imunologia , Inflamação/imunologia , Macrófagos Alveolares/imunologia , Monócitos/imunologia , Alérgenos/imunologia , Alveolite Alérgica Extrínseca/imunologia , Animais , Antígenos Ly/biossíntese , Líquido da Lavagem Broncoalveolar/citologia , Antígeno CD11b/biossíntese , Proliferação de Células , Ácido Clodrônico/farmacologia , Citocinas/biossíntese , Modelos Animais de Doenças , Eosinófilos/imunologia , Antígenos Comuns de Leucócito/genética , Pulmão/imunologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia , Pneumonia/imunologia , Pyroglyphidae/imunologia
16.
J Immunol ; 193(8): 4107-16, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25225664

RESUMO

The potent immunoregulatory properties of IL-10 can counteract protective immune responses and, thereby, promote persistent infections, as evidenced by studies of cryptococcal lung infection in IL-10-deficient mice. To further investigate how IL-10 impairs fungal clearance, the current study used an established murine model of C57BL/6J mice infected with Cryptococcus neoformans strain 52D. Our results demonstrate that fungal persistence is associated with an early and sustained expression of IL-10 by lung leukocytes. To examine whether IL-10-mediated immune modulation occurs during the early or late phase of infection, assessments of fungal burden and immunophenotyping were performed on mice treated with anti-IL-10R-blocking Ab at 3, 6, and 9 d postinfection (dpi) (early phase) or at 15, 18, and 21 dpi (late phase). We found that both early and late IL-10 blockade significantly improved fungal clearance within the lung compared with isotype control treatment when assessed 35 dpi. Immunophenotyping identified that IL-10 blockade enhanced several critical effector mechanisms, including increased accumulation of CD4(+) T cells and B cells, but not CD8(+) T cells; specific increases in the total numbers of Th1 and Th17 cells; and increased accumulation and activation of CD11b(+) dendritic cells and exudate macrophages. Importantly, IL-10 blockade effectively abrogated dissemination of C. neoformans to the brain. Collectively, this study identifies early and late cellular and molecular mechanisms through which IL-10 impairs fungal clearance and highlights the therapeutic potential of IL-10 blockade in the treatment of fungal lung infections.


Assuntos
Criptococose/terapia , Cryptococcus neoformans , Interleucina-10/antagonistas & inibidores , Pneumopatias Fúngicas/imunologia , Células Th1/imunologia , Células Th17/imunologia , Animais , Anticorpos Bloqueadores/administração & dosagem , Linfócitos B/imunologia , Linfócitos T CD8-Positivos/imunologia , Criptococose/imunologia , Células Dendríticas/imunologia , Imunofenotipagem , Interleucina-10/genética , Interleucina-10/imunologia , Pneumopatias Fúngicas/microbiologia , Contagem de Linfócitos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL
17.
J Immunol ; 191(1): 238-48, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23733871

RESUMO

Scavenger receptors represent an important class of pattern recognition receptors shown to mediate both beneficial and detrimental roles in host defense against microbial pathogens. The role of the major macrophage scavenger receptor, scavenger receptor A (SRA), in the immune response against the pathogenic fungus, Cryptococcus neoformans, is unknown. To evaluate the role of SRA in anticryptococcal host defenses, SRA(+/+) mice and SRA(-/-) mice were infected intratracheally with C. neoformans. Results show that infection of SRA(-/-) mice resulted in a reduction in the pulmonary fungal burden at the efferent phase (3 wk) compared with SRA(+/+) mice. Improved fungal clearance in SRA(-/-) mice was associated with decreased accumulation of eosinophils and greater accumulation of CD4(+) T cells and CD11b(+) dendritic cells. Additional parameters were consistent with enhanced anticryptococcal immunity in the infected SRA(-/-) mice: 1) increased expression of the costimulatory molecules CD80 and CD86 by lung APCs, 2) decreased expression of Th2 cytokines (IL-4 and IL-13) and IL-10 in lung leukocytes and in cryptococcal Ag-pulsed splenocytes, 3) diminished IgE production in sera, and 4) increased hallmarks of classical pulmonary macrophage activation. These effects were preceded by increased expression of early pro-Th1 genes in pulmonary lymph nodes at the afferent phase (1 wk). Collectively, our data show that SRA can be exploited by C. neoformans to interfere with the early events of the afferent responses that support Th1 immune polarization. This results in amplification of Th2 arm of the immune response and subsequently impaired adaptive control of C. neoformans in the infected lungs.


Assuntos
Criptococose/imunologia , Criptococose/patologia , Cryptococcus neoformans/imunologia , Pneumopatias Fúngicas/imunologia , Pneumopatias Fúngicas/patologia , Receptores Depuradores Classe A/fisiologia , Animais , Células Cultivadas , Criptococose/microbiologia , Cryptococcus neoformans/crescimento & desenvolvimento , Cryptococcus neoformans/patogenicidade , Feminino , Inflamação/imunologia , Inflamação/microbiologia , Inflamação/patologia , Pneumopatias Fúngicas/microbiologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Receptores Depuradores Classe A/deficiência , Receptores Depuradores Classe A/genética
18.
J Immunol ; 190(7): 3447-57, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23467934

RESUMO

The alveolar epithelium is characteristically abnormal in fibrotic lung disease, and we recently established a direct link between injury to the type II alveolar epithelial cell (AEC) and the accumulation of interstitial collagen. The mechanisms by which damage to the epithelium induces lung scarring remain poorly understood. It is particularly controversial whether an insult to the type II AEC initiates an inflammatory response that is required for the development of fibrosis. To explore whether local inflammation occurs following a targeted epithelial insult and contributes to lung fibrosis, we administered diphtheria toxin to transgenic mice with type II AEC-restricted expression of the diphtheria toxin receptor. We used immunophenotyping techniques and diphtheria toxin receptor-expressing, chemokine receptor-2-deficient (CCR2(-/-)) mice to determine the participation of lung leukocyte subsets in pulmonary fibrogenesis. Our results demonstrate that targeted type II AEC injury induces an inflammatory response that is enriched for CD11b(+) nonresident exudate macrophages (ExM) and their precursors, Ly-6C(high) monocytes. CCR2 deficiency abrogates the accumulation of both cell populations and protects mice from fibrosis, weight loss, and death. Further analyses revealed that the ExM are alternatively activated and that ExM and Ly-6C(high) monocytes express mRNA for IL-13, TGF-ß, and the collagen genes, COL1A1 and COLIIIA1. Furthermore, the accumulated ExM and Ly-6C(high) monocytes contain intracellular collagen, as detected by immunostaining. Together, these results implicate CCR2 and the accumulation of ExM and Ly-6C(high) monocytes as critical determinants of pulmonary fibrosis induced by selective type II AEC injury.


Assuntos
Exsudatos e Transudatos/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Fibrose Pulmonar/genética , Fibrose Pulmonar/imunologia , Receptores CCR2/genética , Células Epiteliais Alveolares/imunologia , Células Epiteliais Alveolares/metabolismo , Animais , Antígenos Ly/imunologia , Colágeno/biossíntese , Citocinas/genética , Citocinas/imunologia , Exsudatos e Transudatos/citologia , Expressão Gênica , Marcação de Genes , Imunofenotipagem , Ativação de Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Monócitos/metabolismo , Fenótipo , Pneumonia/genética , Pneumonia/imunologia , Pneumonia/patologia , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/metabolismo , Fibrose Pulmonar/mortalidade , Receptores CCR2/imunologia , Redução de Peso/genética , Redução de Peso/imunologia
19.
Infect Immun ; 82(3): 937-48, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24324191

RESUMO

Infection of C57BL/6 mice with the moderately virulent Cryptococcus neoformans strain 52D models the complex adaptive immune response observed in HIV-negative patients with persistent fungal lung infections. In this model, Th1 and Th2 responses evolve over time, yet the contribution of interleukin-17A (IL-17A) to antifungal host defense is unknown. In this study, we show that fungal lung infection promoted an increase in Th17 T cells that persisted to 8 weeks postinfection. Our comparison of fungal lung infection in wild-type mice and IL-17A-deficient mice (IL-17A(-/-) mice; C57BL/6 genetic background) demonstrated that late fungal clearance was impaired in the absence of IL-17A. This finding was associated with reduced intracellular containment of the organism within lung macrophages and deficits in the accumulation of total lung leukocytes, including specific reductions in CD11c+ CD11b+ myeloid cells (dendritic cells and exudate macrophages), B cells, and CD8+ T cells, and a nonsignificant trend in the reduction of lung neutrophils. Although IL-17A did not alter the total number of CD4 T cells, decreases in the total number of CD4 T cells and CD8 T cells expressing gamma interferon (IFN-γ) were observed in IL-17A(-/-) mice. Lastly, expression of major histocompatibility complex class II (MHC-II) and the costimulatory molecules CD80 and CD86 on CD11c+ CD11b+ myeloid cells was diminished in IL-17A(-/-) mice. Collectively, these data indicate that IL-17A enhances host defenses against a moderately virulent strain of C. neoformans through effects on leukocyte recruitment, IFN-γ production by CD4 and CD8 T cells, and the activation of lung myeloid cells.


Assuntos
Interferon gama/imunologia , Interleucina-17/imunologia , Leucócitos/imunologia , Pneumopatias Fúngicas/imunologia , Pulmão/imunologia , Animais , Antígenos CD/imunologia , Linfócitos B/imunologia , Linfócitos B/microbiologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/microbiologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/microbiologia , Criptococose/imunologia , Criptococose/microbiologia , Cryptococcus neoformans/imunologia , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Inflamação/imunologia , Inflamação/microbiologia , Leucócitos/microbiologia , Pulmão/microbiologia , Pneumopatias Fúngicas/microbiologia , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/imunologia , Células Mieloides/microbiologia , Neutrófilos/imunologia , Neutrófilos/microbiologia , Células Th1/imunologia , Células Th1/microbiologia , Células Th2/imunologia , Células Th2/microbiologia
20.
Infect Immun ; 82(8): 3098-112, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24818662

RESUMO

Malnutrition is thought to contribute to more than one-third of all childhood deaths via increased susceptibility to infection. Malnutrition is a significant risk factor for the development of visceral leishmaniasis, which results from skin inoculation of the intracellular protozoan Leishmania donovani. We previously established a murine model of childhood malnutrition and found that malnutrition decreased the lymph node barrier function and increased the early dissemination of L. donovani. In the present study, we found reduced numbers of resident dendritic cells (conventional and monocyte derived) but not migratory dermal dendritic cells in the skin-draining lymph nodes of L. donovani-infected malnourished mice. Expression of chemokines and their receptors involved in trafficking of dendritic cells and their progenitors to the lymph nodes was dysregulated. C-C chemokine receptor type 2 (CCR2) and its ligands (CCL2 and CCL7) were reduced in the lymph nodes of infected malnourished mice, as were CCR2-bearing monocytes/macrophages and monocyte-derived dendritic cells. However, CCR7 and its ligands (CCL19 and CCL21) were increased in the lymph node and CCR7 was increased in lymph node macrophages and dendritic cells. CCR2-deficient mice recapitulated the profound reduction in the number of resident (but not migratory dermal) dendritic cells in the lymph node but showed no alteration in the expression of CCL19 and CCL21. Collectively, these results suggest that the malnutrition-related reduction in the lymph node barrier to dissemination of L. donovani is related to insufficient numbers of lymph node-resident but not migratory dermal dendritic cells. This is likely driven by the altered activity of the CCR2 and CCR7 chemoattractant pathways.


Assuntos
Quimiocinas/metabolismo , Células Dendríticas/imunologia , Leishmania donovani/imunologia , Leishmaniose Visceral/complicações , Leishmaniose Visceral/imunologia , Linfonodos/citologia , Desnutrição/imunologia , Animais , Feminino , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Receptores de Quimiocinas/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA