Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
RNA ; 30(3): 298-307, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38164606

RESUMO

Several methods are available to visualize and assess the kinetics and efficiency of elemental steps of protein biosynthesis. However, each of these methods has its own limitations. Here, we present a novel, simple and convenient tool for monitoring stepwise in vitro translation initiated by BODIPY-Met-tRNA. Synthesis and release of very short, 1-7 amino acids, BODIPY-labeled peptides, can be monitored using urea-polyacrylamide gel electrophoresis. Very short BODIPY-labeled oligopeptides might be resolved this way, in contrast to widely used Tris-tricine gel electrophoresis, which is suitable to separate peptides larger than 1 kDa. The method described in this manuscript allows one to monitor the steps of translation initiation, peptide transfer, translocation, and termination as well as their inhibition at an unprecedented single amino acid resolution.


Assuntos
Compostos de Boro , Peptídeos , Aminoacil-RNA de Transferência , Aminoacil-RNA de Transferência/química , Peptídeos/metabolismo , RNA de Transferência/metabolismo , Eletroforese em Gel de Poliacrilamida , Biossíntese de Proteínas
2.
Nucleic Acids Res ; 51(1): 449-462, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36546783

RESUMO

Thermorubin (THR) is an aromatic anthracenopyranone antibiotic active against both Gram-positive and Gram-negative bacteria. It is known to bind to the 70S ribosome at the intersubunit bridge B2a and was thought to inhibit factor-dependent initiation of translation and obstruct the accommodation of tRNAs into the A site. Here, we show that thermorubin causes ribosomes to stall in vivo and in vitro at internal and termination codons, thereby allowing the ribosome to initiate protein synthesis and translate at least a few codons before stalling. Our biochemical data show that THR affects multiple steps of translation elongation with a significant impact on the binding stability of the tRNA in the A site, explaining premature cessation of translation. Our high-resolution crystal and cryo-EM structures of the 70S-THR complex show that THR can co-exist with P- and A-site tRNAs, explaining how ribosomes can elongate in the presence of the drug. Remarkable is the ability of THR to arrest ribosomes at the stop codons. Our data suggest that by causing structural re-arrangements in the decoding center, THR interferes with the accommodation of tRNAs or release factors into the ribosomal A site.


Assuntos
Antraquinonas , Antibacterianos , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Biossíntese de Proteínas , Antibacterianos/farmacologia , Códon de Terminação/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Ribossomos/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Antraquinonas/farmacologia
3.
Proc Natl Acad Sci U S A ; 119(19): e2114214119, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35500116

RESUMO

Argyrins are a family of naturally produced octapeptides that display promising antimicrobial activity against Pseudomonas aeruginosa. Argyrin B (ArgB) has been shown to interact with an elongated form of the translation elongation factor G (EF-G), leading to the suggestion that argyrins inhibit protein synthesis by interfering with EF-G binding to the ribosome. Here, using a combination of cryo-electron microscopy (cryo-EM) and single-molecule fluorescence resonance energy transfer (smFRET), we demonstrate that rather than interfering with ribosome binding, ArgB rapidly and specifically binds EF-G on the ribosome to inhibit intermediate steps of the translocation mechanism. Our data support that ArgB inhibits conformational changes within EF-G after GTP hydrolysis required for translocation and factor dissociation, analogous to the mechanism of fusidic acid, a chemically distinct antibiotic that binds a different region of EF-G. These findings shed light on the mechanism of action of the argyrin-class antibiotics on protein synthesis as well as the nature and importance of rate-limiting, intramolecular conformational events within the EF-G-bound ribosome during late-steps of translocation.


Assuntos
Antibacterianos , Fator G para Elongação de Peptídeos , Antibacterianos/metabolismo , Ácido Fusídico/farmacologia , Humanos , Oligopeptídeos , Fator G para Elongação de Peptídeos/metabolismo , Ribossomos/metabolismo , Translocação Genética
4.
J Biol Chem ; 298(5): 101914, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35398352

RESUMO

N-terminal acetylation is widespread in the eukaryotic proteome but in bacteria is restricted to a small number of proteins mainly involved in translation. It was long known that elongation factor Tu (EF-Tu) is N-terminally acetylated, whereas the enzyme responsible for this process was unclear. Here, we report that RimI acetyltransferase, known to modify ribosomal protein S18, is likewise responsible for N-acetylation of the EF-Tu. With the help of inducible tufA expression plasmid, we demonstrated that the acetylation does not alter the stability of EF-Tu. Binding of aminoacyl tRNA to the recombinant EF-Tu in vitro was found to be unaffected by the acetylation. At the same time, with the help of fast kinetics methods, we demonstrate that an acetylated variant of EF-Tu more efficiently accelerates A-site occupation by aminoacyl-tRNA, thus increasing the efficiency of in vitro translation. Finally, we show that a strain devoid of RimI has a reduced growth rate, expanded to an evolutionary timescale, and might potentially promote conservation of the acetylation mechanism of S18 and EF-Tu. This study increased our understanding of the modification of bacterial translation apparatus.


Assuntos
Acetiltransferases , Bactérias/metabolismo , Fator Tu de Elongação de Peptídeos , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Guanosina Trifosfato/metabolismo , Cinética , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Proteínas Ribossômicas , Ribossomos/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-33593838

RESUMO

Bacterial type II topoisomerases, DNA gyrase and topoisomerase IV, are targets of many antibiotics including fluoroquinolones (FQs). Unfortunately, a number of bacterial species easily acquire resistance to FQs by mutations in either DNA gyrase or topoisomerase IV genes. The emergence of resistant pathogenic strains is a global problem in healthcare, therefore, identifying alternative pathways to thwart their persistence is the current frontier in drug discovery. An attractive class of compounds is nybomycins, reported to be "reverse antibiotics" that selectively inhibit growth of some Gram-positive FQ-resistant bacteria by targeting the mutant form of DNA gyrase, while being inactive against wild-type strains with FQ-sensitive gyrases. The strong "reverse" effect was demonstrated only for a few Gram-positive organisms resistant to FQs due to the S83L/I mutation in GyrA subunit of DNA gyrase. However, the activity of nybomycins has not been extensively explored among Gram-negative species. Here, we observed that in Gram-negative E. coli ΔtolC strain with enhanced permeability, wild-type gyrase and GyrA S83L mutant, resistant to fluoroquinolones, are both similarly sensitive to nybomycin.

6.
RNA ; 26(6): 715-723, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144191

RESUMO

Macrolides are one of the most successful and widely used classes of antibacterials, which kill or stop the growth of pathogenic bacteria by binding near the active site of the ribosome and interfering with protein synthesis. Dirithromycin is a derivative of the prototype macrolide erythromycin with additional hydrophobic side chain. In our recent study, we have discovered that the side chain of dirithromycin forms lone pair-π stacking interaction with the aromatic imidazole ring of the His69 residue in ribosomal protein uL4 of the Thermus thermophilus 70S ribosome. In the current work, we found that neither the presence of the side chain, nor the additional contact with the ribosome, improve the binding affinity of dirithromycin to the ribosome. Nevertheless, we found that dirithromycin is a more potent inhibitor of in vitro protein synthesis in comparison with its parent compound, erythromycin. Using high-resolution cryo-electron microscopy, we determined the structure of the dirithromycin bound to the translating Escherichia coli 70S ribosome, which suggests that the better inhibitory properties of the drug could be rationalized by the side chain of dirithromycin pointing into the lumen of the nascent peptide exit tunnel, where it can interfere with the normal passage of the growing polypeptide chain.


Assuntos
Antibacterianos/química , Eritromicina/análogos & derivados , Inibidores da Síntese de Proteínas/química , Ribossomos/química , Antibacterianos/farmacologia , Microscopia Crioeletrônica , Eritromicina/química , Eritromicina/farmacologia , Escherichia coli/genética , Modelos Moleculares , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , RNA Ribossômico 23S/química
7.
Nat Chem Biol ; 16(10): 1071-1077, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32601485

RESUMO

The increase in multi-drug resistant pathogenic bacteria is making our current arsenal of clinically used antibiotics obsolete, highlighting the urgent need for new lead compounds with distinct target binding sites to avoid cross-resistance. Here we report that the aromatic polyketide antibiotic tetracenomycin (TcmX) is a potent inhibitor of protein synthesis, and does not induce DNA damage as previously thought. Despite the structural similarity to the well-known translation inhibitor tetracycline, we show that TcmX does not interact with the small ribosomal subunit, but rather binds to the large subunit, within the polypeptide exit tunnel. This previously unappreciated binding site is located adjacent to the macrolide-binding site, where TcmX stacks on the noncanonical basepair formed by U1782 and U2586 of the 23S ribosomal RNA. Although the binding site is distinct from the macrolide antibiotics, our results indicate that like macrolides, TcmX allows translation of short oligopeptides before further translation is blocked.


Assuntos
Amycolatopsis/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Amycolatopsis/genética , Amycolatopsis/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Farmacorresistência Bacteriana , Escherichia coli , Células HEK293 , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Mutação , Naftacenos/química , Naftacenos/farmacologia , Ligação Proteica , Biossíntese de Proteínas/efeitos dos fármacos , Conformação Proteica , Ribossomos/metabolismo
8.
Antonie Van Leeuwenhoek ; 115(4): 533-544, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35218449

RESUMO

An actinobacterial strain A23T, isolated from adult ant Camponotus vagus collected in Ryazan region (Russia) and established as tetracenomycin X producer, was subjected to a polyphasic taxonomic study. Morphological characteristics of this strain included well-branched substrate mycelium and aerial hyphae fragmented into rod-shaped elements. Phylogenetic analyses based on 16S rRNA gene and genome sequences showed that strain A23T was most closely related to Amycolatopsis pretoriensis DSM 44654T. Average nucleotide identity and digital DNA-DNA hybridization values between the genome sequences of isolate A23T and its closest relative, Amycolatopsis pretoriensis DSM 44654T, were 39.5% and 88.6%, which were below the 70% and 95-96% cut-off point recommended for bacterial species demarcation, respectively. The genome size of the isolate A23T was 10,560,374 bp with a DNA G + C content of 71.2%. The whole-cell hydrolysate contained meso-diaminopimelic acid and arabinose and galactose as main diagnostic sugars as well as ribose and rhamnose. It contained MK-9(H4) as the predominant menaquinone and iso-C16:0, iso-C15:0, anteiso-C17:0 and C16:0 as the major cellular fatty acids. Diphosphatidylglycerol and phosphatidylethanolamine prevailed among phospholipids. Mycolic acids were not detected. Based on the phenotypic, genomic and phylogenetic data, isolate A23T represents a novel species of the genus Amycolatopsis, for which the name Amycolatopsis camponoti sp. nov. is proposed, and the type strain is A23T (= DSM 111725T = VKM 2882T).


Assuntos
Actinobacteria , Formigas , Amycolatopsis , Animais , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos/análise , Naftacenos , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo , Vitamina K 2/análise
9.
Mol Cell ; 56(4): 531-40, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25306919

RESUMO

We demonstrate that the antibiotic amicoumacin A (AMI) is a potent inhibitor of protein synthesis. Resistance mutations in helix 24 of the 16S rRNA mapped the AMI binding site to the small ribosomal subunit. The crystal structure of bacterial ribosome in complex with AMI solved at 2.4 Å resolution revealed that the antibiotic makes contacts with universally conserved nucleotides of 16S rRNA in the E site and the mRNA backbone. Simultaneous interactions of AMI with 16S rRNA and mRNA and the in vivo experimental evidence suggest that it may inhibit the progression of the ribosome along mRNA. Consistent with this proposal, binding of AMI interferes with translocation in vitro. The inhibitory action of AMI can be partly compensated by mutations in the translation elongation factor G.


Assuntos
Antibacterianos/química , Cumarínicos/química , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/química , Estabilidade de RNA , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Sequência de Bases , Sítios de Ligação , Cumarínicos/farmacologia , Cristalografia por Raios X , Farmacorresistência Bacteriana , Escherichia coli , Testes de Sensibilidade Microbiana , Modelos Moleculares , Fator G para Elongação de Peptídeos/genética , Inibidores da Síntese de Proteínas/farmacologia , RNA Mensageiro/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/química , Subunidades Ribossômicas Menores de Bactérias/química , Staphylococcus aureus/genética , Thermus thermophilus
10.
Biochemistry (Mosc) ; 87(9): 871-889, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36180983

RESUMO

Design and synthesis of conjugates consisting of the macrolide antibiotic desmycosin and fragments of the antibacterial peptide oncocin were performed in attempt to develop new antimicrobial compounds. New compounds were shown to bind to the E. coli 70S ribosomes, to inhibit bacterial protein synthesis in vitro, as well as to suppress bacterial growth. The conjugates of N-terminal hexa- and tripeptide fragments of oncocin and 3,2',4''-triacetyldesmycosin were found to be active against some strains of macrolide-resistant bacteria. By simulating molecular dynamics of the complexes of these compounds with the wild-type bacterial ribosomes and with ribosomes, containing A2059G 23S RNA mutation, the specific structural features of their interactions were revealed.


Assuntos
Peptídeos Antimicrobianos , Escherichia coli , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Macrolídeos/análise , Macrolídeos/metabolismo , Inibidores da Síntese de Proteínas/química , RNA/metabolismo , Ribossomos/química , Tilosina/análogos & derivados
11.
Nucleic Acids Res ; 48(12): 6931-6942, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32427319

RESUMO

First triplets of mRNA coding region affect the yield of translation. We have applied the flowseq method to analyze >30 000 variants of the codons 2-11 of the fluorescent protein reporter to identify factors affecting the protein synthesis. While the negative influence of mRNA secondary structure on translation has been confirmed, a positive role of rare codons at the beginning of a coding sequence for gene expression has not been observed. The identity of triplets proximal to the start codon contributes more to the protein yield then more distant ones. Additional in-frame start codons enhance translation, while Shine-Dalgarno-like motifs downstream the initiation codon are inhibitory. The metabolic cost of amino acids affects the yield of protein in the poor medium. The most efficient translation was observed for variants with features resembling those of native Escherichia coli genes.


Assuntos
Códon de Iniciação/genética , Conformação de Ácido Nucleico , Biossíntese de Proteínas , RNA Mensageiro/genética , Códon de Iniciação/ultraestrutura , Escherichia coli/genética , Proteínas de Fluorescência Verde/genética , Iniciação Traducional da Cadeia Peptídica , RNA Mensageiro/ultraestrutura , Ribossomos/genética , Ribossomos/ultraestrutura
12.
Nucleic Acids Res ; 48(15): 8617-8625, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32597957

RESUMO

Type II toxin-antitoxins systems are widespread in prokaryotic genomes. Typically, they comprise two proteins, a toxin, and an antitoxin, encoded by adjacent genes and forming a complex in which the enzymatic activity of the toxin is inhibited. Under stress conditions, the antitoxin is degraded liberating the active toxin. Though thousands of various toxin-antitoxins pairs have been predicted bioinformatically, only a handful has been thoroughly characterized. Here, we describe the AtaT2 toxin from a toxin-antitoxin system from Escherichia coli O157:H7. We show that AtaT2 is the first GNAT (Gcn5-related N-acetyltransferase) toxin that specifically targets charged glycyl tRNA. In vivo, the AtaT2 activity induces ribosome stalling at all four glycyl codons but does not evoke a stringent response. In vitro, AtaT2 acetylates the aminoacyl moiety of isoaccepting glycyl tRNAs, thus precluding their participation in translation. Our study broadens the known target specificity of GNAT toxins beyond the earlier described isoleucine and formyl methionine tRNAs, and suggest that various GNAT toxins may have evolved to specificaly target other if not all individual aminoacyl tRNAs.


Assuntos
Acetiltransferases/genética , Escherichia coli O157/genética , Glicina-tRNA Ligase/genética , Biossíntese de Proteínas/genética , Antitoxinas/genética , Toxinas Bacterianas/genética , Escherichia coli O157/patogenicidade , Sistemas Toxina-Antitoxina/genética
13.
Int J Mol Sci ; 23(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35742896

RESUMO

In the bid to survive and thrive in an environmental setting, bacterial species constantly interact and compete for resources and space in the microbial ecosystem. Thus, they have adapted to use various antibiotics and toxins to fight their rivals. Simultaneously, they have evolved an ability to withstand weapons that are directed against them. Several bacteria harbor colicinogenic plasmids which encode toxins that impair the translational apparatus. One of them, colicin E3 ribotoxin, mediates cleavage of the 16S rRNA in the decoding center of the ribosome. In order to thrive upon deployment of such ribotoxins, competing bacteria may have evolved counter-conflict mechanisms to prevent their demise. A recent study demonstrated the role of PrfH and the RtcB2 module in rescuing a damaged ribosome and the subsequent re-ligation of the cleaved 16S rRNA by colicin E3 in vitro. The rtcB2-prfH genes coexist as gene neighbors in an operon that is sporadically spread among different bacteria. In the current study, we report that the RtcB2-PrfH module confers resistance to colicin E3 toxicity in E. coli ATCC25922 cells in vivo. We demonstrated that the viability of E. coli ATCC25922 strain that is devoid of rtcB2 and prfH genes is impaired upon action of colicin E3, in contrast to the parental strain which has intact rtcB2 and prfH genes. Complementation of the rtcB2 and prfH gene knockout with a high copy number-plasmid (encoding either rtcB2 alone or both rtcB2-prfH operon) restored resistance to colicin E3. These results highlight a counter-conflict system that may have evolved to thwart colicin E3 activity.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Colicinas , Proteínas de Escherichia coli/metabolismo , Colicinas/genética , Colicinas/farmacologia , Ecossistema , Escherichia coli/genética , Óperon , Plasmídeos/genética , RNA Ribossômico 16S
14.
Int J Mol Sci ; 23(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35955702

RESUMO

Nanopore sequencing (ONT) is a new and rapidly developing method for determining nucleotide sequences in DNA and RNA. It serves the ability to obtain long reads of thousands of nucleotides without assembly and amplification during sequencing compared to next-generation sequencing. Nanopore sequencing can help for determination of genetic changes leading to antibiotics resistance. This study presents the application of ONT technology in the assembly of an E. coli genome characterized by a deletion of the tolC gene and known single-nucleotide variations leading to antibiotic resistance, in the absence of a reference genome. We performed benchmark studies to determine minimum coverage depth to obtain a complete genome, depending on the quality of the ONT data. A comparison of existing programs was carried out. It was shown that the Flye program demonstrates plausible assembly results relative to others (Shasta, Canu, and Necat). The required coverage depth for successful assembly strongly depends on the size of reads. When using high-quality samples with an average read length of 8 Kbp or more, the coverage depth of 30× is sufficient to assemble the complete genome de novo and reliably determine single-nucleotide variations in it. For samples with shorter reads with mean lengths of 2 Kbp, a higher coverage depth of 50× is required. Avoiding of mechanical mixing is obligatory for samples preparation. Nanopore sequencing can be used alone to determine antibiotics-resistant genetic features of bacterial strains.


Assuntos
Sequenciamento por Nanoporos , Antibacterianos/farmacologia , Escherichia coli/genética , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos
15.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36293163

RESUMO

Flow-seq is a method that combines fluorescently activated cell sorting and next-generation sequencing to deduce a large amount of data about translation efficiency from a single experiment. Here, we constructed a library of fluorescent protein-based reporters preceded by a set of 648 natural 5'-untranslated regions (5'-UTRs) of Escherichia coli genes. Usually, Flow-seq libraries are constructed using uniform-length sequence elements, in contrast to natural situations, where functional elements are of heterogenous lengths. Here, we demonstrated that a 5'-UTR library of variable length could be created and analyzed with Flow-seq. In line with previous Flow-seq experiments with randomized 5'-UTRs, we observed the influence of an RNA secondary structure and Shine-Dalgarno sequences on translation efficiency; however, the variability of these parameters for natural 5'-UTRs in our library was smaller in comparison with randomized libraries. In line with this, we only observed a 30-fold difference in translation efficiency between the best and worst bins sorted with this factor. The results correlated with those obtained with ribosome profiling.


Assuntos
Escherichia coli , Ribossomos , Escherichia coli/genética , Escherichia coli/metabolismo , Regiões 5' não Traduzidas/genética , Ribossomos/genética , Ribossomos/metabolismo , Biblioteca Gênica , Biossíntese de Proteínas
16.
RNA ; 25(7): 757-767, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31010886

RESUMO

Poly(rC)-binding protein 2 (PCBP2, hnRNP E2) is one of the most abundant RNA-binding proteins in mammalian cells. In humans, it exists in seven isoforms, which are assumed to play similar roles in cells. The protein is shown to bind 3'-untranslated regions (3'-UTRs) of many mRNAs and regulate their translation and/or stability, but nothing is known about the functional consequences of PCBP2 binding to 5'-UTRs. Here we show that the PCBP2 isoform f interacts with the 5'-UTRs of mRNAs encoding eIF4G2 (a translation initiation factor with a yet unknown mechanism of action, also known as DAP5) and Cyclin I, and inhibits their translation in vitro and in cultured cells, while the PCBP2 isoform e only affects Cyclin I translation. Furthermore, eIF4G2 participates in a cap-dependent translation of the PCBP2 mRNA. Thus, PCBP2 and eIF4G2 seem to regulate one another's expression via a novel type of feedback loop formed by the translation initiation factor and the RNA-binding protein.


Assuntos
Regiões 5' não Traduzidas/genética , Fator de Iniciação Eucariótico 4G/genética , Biossíntese de Proteínas , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Células Cultivadas , Fator de Iniciação Eucariótico 4G/metabolismo , Humanos , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética
17.
Bioorg Med Chem Lett ; 43: 128055, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33892103

RESUMO

The antibacterial properties of close noscapine analogs have not been previously reported. We used our pDualrep2 double-reporter High Throughput Screening (HTS) platform to identify a series of noscapine derivatives with promising antibacterial activity. The platform is based on RPF (SOS-response/DNA damage) and Katushka2S (inhibition of translation) proteins and simultaneously provides information on antibacterial activity and the mechanism of action of small-molecule compounds against E. coli. The most potent compound exhibited an MIC of 13.5 µM(6.25 µg/ml) and a relatively low cytotoxicity against HEK293 cells (CC50 = 71 µM, selectivity index: ~5.5). Some compounds from this series induced average Katushka2S reporter signals, indicating inhibition of translation machinery in the bacteria; however, these compounds did not attenuate translation in vitro in a luciferase-based translation assay. The most effective compounds did not significantly arrest the mitotic cycle in HEK293 cells, in contrast to the parent compound in a flow cytometry assay. Several molecules showed activity against clinically relevant gram-negative and gram-positive bacterial strains. Compounds from the discovered series can be reasonably regarded as good templates for further development and evaluation.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Noscapina/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Noscapina/síntese química , Noscapina/química , Relação Estrutura-Atividade
18.
Proc Natl Acad Sci U S A ; 115(38): 9551-9556, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30181282

RESUMO

Microbiome spectra serve as critical clues to elucidate the evolutionary biology pathways, potential pathologies, and even behavioral patterns of the host organisms. Furthermore, exotic sources of microbiota represent an unexplored niche to discover microbial secondary metabolites. However, establishing the bacterial functionality is complicated by an intricate web of interactions inside the microbiome. Here we apply an ultrahigh-throughput (uHT) microfluidic droplet platform for activity profiling of the entire oral microbial community of the Siberian bear to isolate Bacillus strains demonstrating antimicrobial activity against Staphylococcus aureus Genome mining allowed us to identify antibiotic amicoumacin A (Ami) as responsible for inhibiting the growth of S. aureus Proteomics and metabolomics revealed a unique mechanism of Bacillus self-resistance to Ami, based on a subtle equilibrium of its deactivation and activation by kinase AmiN and phosphatase AmiO, respectively. We developed uHT quantitative single-cell analysis to estimate antibiotic efficacy toward different microbiomes and used it to determine the activity spectra of Ami toward human and Siberian bear microbiota. Thus, uHT microfluidic droplet platform activity profiling is a powerful tool for discovering antibiotics and quantifying external influences on a microbiome.


Assuntos
Antibacterianos/farmacologia , Cumarínicos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Metabolômica/métodos , Animais , Antibacterianos/metabolismo , Bacillus pumilus/efeitos dos fármacos , Bacillus pumilus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cumarínicos/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Farmacorresistência Bacteriana/fisiologia , Microbioma Gastrointestinal/fisiologia , Perfilação da Expressão Gênica , Voluntários Saudáveis , Humanos , Dispositivos Lab-On-A-Chip , Proteômica/métodos , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Análise de Célula Única/métodos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Ursidae/microbiologia
19.
J Asian Nat Prod Res ; 23(10): 992-1000, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32924591

RESUMO

One new virginiamycin derivative, 'beilunmycin' (1), and three known virginiamycin antibiotics, 16-hydroxy-virginiamycin M1 (2), virginiamycin M2 (3), and virginiamycin M1 (4), were isolated from the culture of a mangrove-derived endophytic Streptomyces sp. 2BBP-J2. The structures were characterized on the basis of their spectroscopic data, and the absolute configuration of 1 was established by ECD calculations. Compounds 1-4 exhibited antibacterial activities against Gram-positive bacteria, with MIC values in the range of 0.5-16 µg/ml. All the compounds demonstrated strong protein translation-stalling activity, with minimal concentrations detected with pDualrep2 in the range of 1.9-5.9 nmol.


Assuntos
Streptomyces , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Biossíntese de Proteínas , Streptomyces/metabolismo , Virginiamicina/metabolismo
20.
Angew Chem Int Ed Engl ; 60(34): 18694-18703, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34009717

RESUMO

We report a novel family of natural lipoglycopeptides produced by Streptomyces sp. INA-Ac-5812. Two major components of the mixture, named gausemycins A and B, were isolated, and their structures were elucidated. The compounds are cyclic peptides with a unique peptide core and several remarkable structural features, including unusual positions of d-amino acids, lack of the Ca2+ -binding Asp-X-Asp-Gly (DXDG) motif, tyrosine glycosylation with arabinose, presence of 2-amino-4-hydroxy-4-phenylbutyric acid (Ahpb) and chlorinated kynurenine (ClKyn), and N-acylation of the ornithine side chain. Gausemycins have pronounced activity against Gram-positive bacteria. Mechanistic studies highlight significant differences compared to known glyco- and lipopeptides. Gausemycins exhibit only slight Ca2+ -dependence of activity and induce no pore formation at low concentrations. Moreover, there is no detectable accumulation of cell wall biosynthesis precursors under treatment with gausemycins.


Assuntos
Lipoglicopeptídeos/isolamento & purificação , Streptomyces/química , Lipoglicopeptídeos/química , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA