Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
No Shinkei Geka ; 49(3): 485-489, 2021 May.
Artigo em Japonês | MEDLINE | ID: mdl-34092553

RESUMO

Finding novel treatment approaches for brain tumors is challenging, especially for malignant gliomas. A wealth of genetic and expression data on malignant glioma has accumulated in recent years; however, therapies targeting the underlying oncogenic pathways have not succeeded in substantially improving therapeutic responses or survival, owning to tumor resistance mechanisms to these therapies. Therefore, new therapeutic approaches are necessary to reduce the mortality rates in patients with glioma. This study examined current trends in preclinical research for malignant glioma to predict future therapies. This analysis revealed that current preclinical research mainly focused on the immune response and tumor microenvironment. Knowledge from these researches may lead to the development of new therapeutics for the management of malignant glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/epidemiologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Glioma/epidemiologia , Glioma/genética , Glioma/terapia , Humanos , Microambiente Tumoral
2.
Mol Cell Biochem ; 430(1-2): 37-46, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28181135

RESUMO

Regucalcin plays a crucial role as a suppressor of transcription signaling, and its diminished expression or activity may play a key role in human carcinogenesis. Higher regucalcin expression has been demonstrated to prolong survival of the patients of pancreatic cancer, breast cancer, and hepatocellular carcinoma. Moreover, we investigated an involvement of regucalcin in human lung cancer. Human non-small cell lung cancer (NSCLC) accounts for over 80% in human lung cancer and is one of the leading causes of malignancy-related mortality with fewer than 16% patients surviving beyond 5 years. In this study, gene expression and survival data of 204 lung adenocarcinoma patients were obtained through the gene expression omnibus database (GSE31210) for outcome analysis. Gene expression data demonstrated that prolonged survival in lung cancer patients is associated with higher regucalcin gene expression. Overexpression of regucalcin suppressed the proliferation, cell death, and migration of human lung adenocarcinoma NSCLC A549 cells in vitro. Mechanistically, regucalcin induced G1 and G2/M phase cell cycle arrest of A549 cells through suppression of multiple signaling pathways including Ras, Akt, MAP kinase, and SAPK/JNK. Moreover, overexpression of regucalcin caused decreases in the oncogenes c-fos and c-myc and elevation of the tumor suppressers p53 and Rb. These findings suggest that regucalcin may play a potential role as a suppressor of human lung cancer, and that downregulation of regucalcin expression may predispose patients to development of lung cancer. Overexpression of regucalcin using gene delivery may constitute a novel therapeutic approach to treating lung cancer.


Assuntos
Adenocarcinoma , Proteínas de Ligação ao Cálcio/biossíntese , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Neoplasias Pulmonares , Proteínas Supressoras de Tumor/biossíntese , Células A549 , Adenocarcinoma/metabolismo , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Intervalo Livre de Doença , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Masculino , Taxa de Sobrevida
3.
J Neurooncol ; 133(2): 277-285, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28447277

RESUMO

Glioblastoma (GBM) is the most common type of malignant brain tumor and has a very poor prognosis. Most patients relapse within 12 months despite aggressive treatment and patient outcome after recurrent is extremely worse. This study was designed to clarify the change of the molecular expression, including programmed cell death 1 (PD-1) and PD-ligand 1 (PD-L1), on the initial and secondary resected tumor specimens and to address the influence of these expressions for patient outcome after second surgery of glioblastoma. We investigated 16 patients, ranging in age from 14 to 65 years, with histologically verified WHO grade IV GBM, whose original tumor was resected between 2008 and 2014, and treated with fractionated radiotherapy and temozolomide. Four patients who were treated with immunotherapy using autologous formalin-fixed tumor vaccine were enrolled. All of the patients underwent secondary resection after tumor recurrence within 24 months. We carried out an immunohistochemical examination of the initial and secondary resected tumors from patients using a panel of immune system molecular markers, and assessed whether marker expression correlated with clinical outcomes. CD3, CD8 and PD-1 on tumor-infiltrating lymphocytes was significantly increased in secondary resected specimens compared with initially resected specimens (p ≤ 0.05). All patients expressed PD-L1 on tumor cells in initial and secondary resection specimens. Patients were divided into high or low expression group by median IHC score of PD-1 on initial or secondary resected specimens. No significant differences in patient outcomes were observed between high and low PD-1 or PD-L1 groups of initially resected specimens. In high expression group of secondary resected specimens, most patients score had increased which compared with initial resected tumor specimens. The PD-1 high expression score group of secondary resected specimens was associated with long progression-free survival and short survival after recurrence. PD-L1 expression was detected in almost all initial and secondary specimens. Patients with high PD-1 expression of secondary specimen had bad prognosis after secondary resection. PD-1/PD-L1 pathway may be associated with patient outcome after second surgery of glioblastoma.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Receptor de Morte Celular Programada 1/metabolismo , Adolescente , Adulto , Idoso , Antineoplásicos/uso terapêutico , Antígeno B7-H1/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Antígenos CD8/metabolismo , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Humanos , Isocitrato Desidrogenase/genética , Antígeno Ki-67/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação/genética , Proteínas de Neoplasias/metabolismo , Estudos Retrospectivos , Estatísticas não Paramétricas , Adulto Jovem
4.
Stem Cells ; 31(4): 627-40, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23335250

RESUMO

Cancer stem cells (CSCs) play an important role in disease recurrence after radiation treatment as a result of intrinsic properties such as high DNA repair capability and antioxidative capacity. It is unclear, however, how CSCs further adapt to escape the toxicity of the repeated irradiation regimens used in clinical practice. Here, we have exposed a population of murine glioma stem cells (GSCs) to fractionated radiation in order to investigate the associated adaptive changes, with the ultimate goal of identifying a targetable factor that regulates acquired radioresistance. We have shown that fractionated radiation induces an increase in IGF1 secretion and a gradual upregulation of the IGF type 1 receptor (IGF1R) in GSCs. Interestingly, IGF1R upregulation exerts a dual radioprotective effect. In the resting state, continuous IGF1 stimulation ultimately induces downregulation of Akt/extracellular-signal-regulated kinases (ERK) and FoxO3a activation, which results in slower proliferation and enhanced self-renewal. In contrast, after acute radiation, the abundance of IGF1R and increased secretion of IGF1 promote a rapid shift from a latent state toward activation of Akt survival signaling, protecting GSCs from radiation toxicity. Treatment of tumors formed by the radioresistant GSCs with an IGF1R inhibitor resulted in a marked increase in radiosensitivity, suggesting that blockade of IGF1R signaling is an effective strategy to reverse radioresistance. Together, our results show that GSCs evade the damage of repeated radiation not only through innate properties but also through gradual inducement of resistance pathways and identify the dynamic regulation of GSCs by IGF1R signaling as a novel mechanism of adaptive radioprotection.


Assuntos
Glioma/patologia , Glioma/radioterapia , Células-Tronco Neoplásicas/metabolismo , Receptor IGF Tipo 1/metabolismo , Animais , Ensaio de Imunoadsorção Enzimática , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/metabolismo , Glioma/metabolismo , Humanos , Immunoblotting , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Células Tumorais Cultivadas
5.
J Neurooncol ; 117(1): 43-51, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24442483

RESUMO

Emerging evidence suggests that the chemokine CXCL12 and its receptor CXCR4, which are expressed by glioma stem cells (GSCs), play an important role in tumorigenesis. To provide evidence for establishing a new therapy targeting the CXCL12/CXCR4 pathway, we investigated whether CXCL12 secreted from GSCs contributed to their proliferation and promoted angiogenesis in murine GSCs. Angiogenetic functions and proliferation of GSCs with or without CXCL12 inhibitors were evaluated in an in vitro model using tube formation assays, RT-PCR, and proliferation, as well as in an in vivo syngenic model. In endothelial culture, the morphology and gene expression of GSCs changed from stem cell-like characteristics to endothelial cell-like features. CXCL12 expression increased in endothelial cell-like GSCs. CXCL12 blockage with siRNA or shRNA markedly inhibited cell proliferation in vitro. CXCL12 knockdown with shRNA also inhibited tumor growth in vivo. On the other hand, CXCL12/CXCR4 blockage affected neither tube formation in vitro nor angiogenesis in vivo. The CXCL12 secreted from GSCs (autocrine/paracrine CXCL12) regulates their proliferation, but probably not angiogenesis.


Assuntos
Proliferação de Células , Quimiocina CXCL12/metabolismo , Glioma/metabolismo , Glioma/fisiopatologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/fisiologia , Animais , Linhagem Celular Tumoral , Quimiocina CXCL12/antagonistas & inibidores , Quimiocina CXCL12/genética , Células Endoteliais/patologia , Células Endoteliais/fisiologia , Ensaio de Imunoadsorção Enzimática , Técnicas de Silenciamento de Genes , Glioma/patologia , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Células-Tronco Neoplásicas/patologia , Neovascularização Patológica/patologia , Neovascularização Patológica/fisiopatologia , RNA Interferente Pequeno , Reação em Cadeia da Polimerase em Tempo Real , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/genética , Receptores CXCR4/metabolismo
6.
Cells ; 13(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38727288

RESUMO

Glioblastoma (GBM) is a devastating brain cancer for which new effective therapies are urgently needed. GBM, after an initial response to current treatment regimens, develops therapeutic resistance, leading to rapid patient demise. Cancer cells exhibit an inherent elevation of endoplasmic reticulum (ER) stress due to uncontrolled growth and an unfavorable microenvironment, including hypoxia and nutrient deprivation. Cancer cells utilize the unfolded protein response (UPR) to maintain ER homeostasis, and failure of this response promotes cell death. In this study, as integrins are upregulated in cancer, we have evaluated the therapeutic potential of individually targeting all αß1 integrin subunits using RNA interference. We found that GBM cells are uniquely susceptible to silencing of integrin α3. Knockdown of α3-induced proapoptotic markers such as PARP cleavage and caspase 3 and 8 activation. Remarkably, we discovered a non-canonical function for α3 in mediating the maturation of integrin ß1. In its absence, generation of full length ß1 was reduced, immature ß1 accumulated, and the cells underwent elevated ER stress with upregulation of death receptor 5 (DR5) expression. Targeting α3 sensitized TRAIL-resistant GBM cancer cells to TRAIL-mediated apoptosis and led to growth inhibition. Our findings offer key new insights into integrin α3's role in GBM survival via the regulation of ER homeostasis and its value as a therapeutic target.


Assuntos
Estresse do Retículo Endoplasmático , Glioblastoma , Integrina alfa3 , Integrina beta1 , Ligante Indutor de Apoptose Relacionado a TNF , Humanos , Apoptose/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Glioblastoma/patologia , Glioblastoma/metabolismo , Glioblastoma/genética , Integrina alfa3/metabolismo , Integrina alfa3/genética , Integrina beta1/metabolismo , Integrina beta1/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia
7.
Front Pharmacol ; 15: 1363511, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720782

RESUMO

The development of effective therapy for eradicating glioblastoma stem cells remains a major challenge due to their aggressive growth, chemoresistance and radioresistance which are mainly conferred by aldehyde dehydrogenase (ALDH)1A1. The latter is the main stemness mediator via enhancing signaling pathways of Wnt/ß-catenin, phosphatidylinositol 3-kinase/AKT, and hypoxia. Furthermore, ALDH1A1 mediates therapeutic resistance by inactivating drugs, stimulating the expression of drug efflux transporters, and detoxifying reactive radical species, thereby apoptosis arresting. Recent reports disclosed the potent and broad-spectrum anticancer activities of the unique nanocomplexes of diethyldithiocarbamate (DE, ALDH1A1 inhibitor) with ferrous oxide nanoparticles (FeO NPs) mainly conferred by inducing lipid peroxidation-dependent non-apoptotic pathways (iron accumulation-triggered ferroptosis), was reported. Accordingly, the anti-stemness activity of nanocomplexes (DE-FeO NPs) was investigated against human and mouse glioma stem cells (GSCs) and radioresistant GSCs (GSCs-RR). DE-FeO NPs exhibited the strongest growth inhibition effect on the treated human GSCs (MGG18 and JX39P), mouse GSCs (GS and PDGF-GSC) and their radioresistant cells (IC50 ≤ 70 and 161 µg/mL, respectively). DE-FeO NPs also revealed a higher inhibitory impact than standard chemotherapy (temozolomide, TMZ) on self-renewal, cancer repopulation, chemoresistance, and radioresistance potentials. Besides, DE-FeO NPs surpassed TMZ regarding the effect on relative expression of all studied stemness genes, as well as relative p-AKT/AKT ratio in the treated MGG18, GS and their radioresistant (MGG18-RR and GS-RR). This potent anti-stemness influence is primarily attributed to ALDH1A1 inhibition and ferroptosis induction, as confirmed by significant elevation of cellular reactive oxygen species and lipid peroxidation with significant depletion of glutathione and glutathione peroxidase 4. DE-FeO NPs recorded the optimal LogP value for crossing the blood brain barrier. This in vitro novel study declared the potency of DE-FeO NPs for collapsing GSCs and GSCs-RR with improving their sensitivity to chemotherapy and radiotherapy, indicating that DE-FeO NPs may be a promising remedy for GBM. Glioma animal models will be needed for in-depth studies on its safe effectiveness.

8.
Acta Neurochir Suppl ; 118: 185-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23564129

RESUMO

PURPOSES: Anti-edema effect of bevacizumab was evaluated using the apparent diffusion coefficient (ADC) of peritumoral edema associated with regional cerebral blood flow (rCBV) of the tumor. MATERIALS AND METHODS: Nine patients with recurrent glioblastoma were treated using bevacizumab for 4 ∼ 36 months (average 12 months). MRI was performed every 2 months. For each MRI, ADC value, Gd-enhanced area on T1 imaging, area of peritumoral edema on T2 imaging, and rCBV on perfusion imaging were measured. ADC and rCBV values were determined by the use of regions of interest positioned in areas of high signal intensity, as seen on T2-weighted images and ADC maps. RESULTS: After 2 months of bevacizumab treatment, ADC values and rCBV decreased 49 and 32 % respectively, associated with marked diminishment of the Gd-enhanced area compared with pretreatment. After 6 months, in 5 of the 9 cases, the Gd-enhanced area appeared again with no change in the ADC value and rCBV. In the other four cases, the Gd-enhanced area as well as the ADC value and rCBV returned to the initial status. CONCLUSION: The anti-edema effect of bevacizumab for treatment of recurrent glioblastoma that was demonstrated by decreased ADC values and rCBV was dramatic and -prolonged at 6 months even with tumor progression.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Edema Encefálico/tratamento farmacológico , Edema Encefálico/etiologia , Neoplasias Encefálicas/complicações , Glioblastoma/complicações , Bevacizumab , Neoplasias Encefálicas/tratamento farmacológico , Circulação Cerebrovascular/efeitos dos fármacos , Circulação Cerebrovascular/fisiologia , Difusão , Gadolínio , Glioblastoma/tratamento farmacológico , Humanos , Imageamento por Ressonância Magnética , Fatores de Tempo
9.
Front Cell Dev Biol ; 11: 1214118, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37920826

RESUMO

Antibody therapeutics are limited in treating brain diseases due to poor blood-brain barrier (BBB) penetration. We have discovered that poly 2-methacryloyloxyethyl phosphorylcholine (PMPC), a biocompatible polymer, effectively facilitates BBB penetration via receptor-mediated transcytosis and have developed a PMPC-shell-based platform for brain delivery of therapeutic antibodies, termed nanocapsule. Yet, the platform results in functional loss of antibodies due to epitope masking by the PMPC polymer network, which necessitates the incorporation of a targeting moiety and degradable crosslinker to enable on-site antibody release. In this study, we developed a novel platform based on site-oriented conjugation of PMPC to the antibody, allowing it to maintain key functionalities of the original antibody. With an optimized PMPC chain length, the PMPC-antibody conjugate exhibited enhanced brain delivery while retaining epitope recognition, cellular internalization, and antibody-dependent cellular phagocytic activity. This simple formula incorporates only the antibody and PMPC without requiring additional components, thereby addressing the issues of the nanocapsule platform and paving the way for PMPC-based brain delivery strategies for antibodies.

10.
Neuro Oncol ; 25(5): 899-912, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36273330

RESUMO

BACKGROUND: Intensive chemotherapeutic regimens with craniospinal irradiation have greatly improved survival in medulloblastoma patients. However, survival markedly differs among molecular subgroups and their biomarkers are unknown. Through unbiased screening, we found Schlafen family member 11 (SLFN11), which is known to improve response to DNA damaging agents in various cancers, to be one of the top prognostic markers in medulloblastomas. Hence, we explored the expression and functions of SLFN11 in medulloblastoma. METHODS: SLFN11 expression for each subgroup was assessed by immunohistochemistry in 98 medulloblastoma patient samples and by analyzing transcriptomic databases. We genetically or epigenetically modulated SLFN11 expression in medulloblastoma cell lines and determined cytotoxic response to the DNA damaging agents cisplatin and topoisomerase I inhibitor SN-38 in vitro and in vivo. RESULTS: High SLFN11 expressing cases exhibited significantly longer survival than low expressing cases. SLFN11 was highly expressed in the WNT-activated subgroup and in a proportion of the SHH-activated subgroup. While WNT activation was not a direct cause of the high expression of SLFN11, a specific hypomethylation locus on the SLFN11 promoter was significantly correlated with high SLFN11 expression. Overexpression or deletion of SLFN11 made medulloblastoma cells sensitive and resistant to cisplatin and SN-38, respectively. Pharmacological upregulation of SLFN11 by the brain-penetrant histone deacetylase-inhibitor RG2833 markedly increased sensitivity to cisplatin and SN-38 in SLFN11-negative medulloblastoma cells. Intracranial xenograft studies also showed marked sensitivity to cisplatin by SLFN11-overexpression in medulloblastoma cells. CONCLUSIONS: High SLFN11 expression is one factor which renders favorable outcomes in WNT-activated and a subset of SHH-activated medulloblastoma possibly through enhancing response to cisplatin.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Humanos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Cisplatino/farmacologia , Regulação para Cima , Irinotecano , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/genética , Epigênese Genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteínas Nucleares/metabolismo
11.
Cancers (Basel) ; 14(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36139652

RESUMO

The current standard-of-care treatment for glioblastoma includes DNA damaging agents, γ-irradiation (IR) and temozolomide (TMZ). These treatments fail frequently and there is limited alternative strategy. Therefore, identifying a new therapeutic target is urgently needed to develop a strategy that improves the efficacy of the existing treatments. Here, we report that tumor samples from GBM patients express a high level of SAMHD1, emphasizing SAMHD1's importance. The depletion of SAMHD1 using virus-like particles containing Vpx, VLP(+Vpx), sensitized two independent GBM cell lines (LN-229 and U-87) to veliparib, a well-established PARP inhibitor, and slowed cell growth in a dose-dependent manner. In the mouse GBM xenograft model, Vpx-mediated SAMHD1 depletion reduced tumor growth and SAMHD1 knockout (KO) improved survival. In combination with IR or TMZ, SAMHD1 KO and exposure to 50% growth inhibitory dose (gID50) of VLP(+Vpx) displayed a synergistic effect, resulting in impaired HR, and improved LN-229 cells' sensitivity to TMZ and IR. In conclusion, our finding demonstrates that SAMHD1 promotes GBM resistance to treatment, and it is a plausible therapeutic target to improve the efficacy of TMZ and IR in GBM. Furthermore, we show that Vpx could be a potential therapeutic tool that can be utilized to deplete SAMHD1 in GBM.

12.
iScience ; 25(12): 105544, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36406860

RESUMO

Umbilical cord blood (UCB) is an irreplaceable source for hematopoietic stem progenitor cells (HSPCs). However, the effects of SARS-CoV-2 infection and COVID-19 vaccination on UCB phenotype, specifically the HSPCs therein, are currently unknown. We thus evaluated any effects of SARS-CoV-2 infection and/or COVID-19 vaccination from the mother on the fate and functionalities of HSPCs in the UCB. The numbers and frequencies of HSPCs in the UCB decreased significantly in donors with previous SARS-CoV-2 infection and more so with COVID-19 vaccination via the induction of apoptosis, likely mediated by IFN-γ-dependent pathways. Two independent hematopoiesis assays, a colony forming unit assay and a mouse humanization assay, revealed skewed hematopoiesis of HSPCs obtained from donors delivered from mothers with SARS-CoV-2 infection history. These results indicate that SARS-CoV-2 infection and COVID-19 vaccination impair the functionalities and survivability of HSPCs in the UCB, which would make unprecedented concerns on the future of HSPC-based therapies.

13.
Transl Oncol ; 14(1): 100955, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33232921

RESUMO

Prostate cancer, which is a bone metastatic cancer, is the second leading cause of cancer-related death in men. There is no effective treatment for metastatic prostate cancer. Regucalcin has been shown to contribute as a suppressor in various types of human cancers. In the present study, furthermore, we investigate an involvement of regucalcin in suppression of prostate cancer. Regucalcin expression was compared in 131 primary tumor tissues and 19 metastatic tumor tissues in prostate cancer patients. Regucalcin expression in the metastatic tumor was found to be reduced as compared with that in primary tumor. The progression-free survival rate was prolonged in patients with a higher regucalcin expression. Translationally, overexpression of regucalcin in bone metastatic human prostate cancer PC-3 and DU-145 cells suppressed colony formation and cell growth in vitro. Mechanistically, overexpressed regucalcin enhanced the levels of p53, Rb, and p21, and decreased the levels of Ras, PI3 kinase, Akt, and mitogen-activated protein kinase, leading to suppression of cell growth. Furthermore, higher regucalcin expression suppressed the levels of nuclear factor-κB p65, ß-catenin, and signal transducer and activator of transcription 3, which regulate a transcription activity. Cell growth was promoted by culturing with the calcium agonist Bay K 8644. This effect was blocked by overexpression of regucalcin. Notably, overexpressed regucalcin suppressed bone metastatic activity of PC-3 and DU-145 cells when cocultured with preosteoblastic or preosteoclastic cells. Regucalcin may suppress the development of human prostate cancer, suggesting that gene delivery systems in which its expression is forced may be a novel therapeutic strategy.

14.
Oncogene ; 40(33): 5182-5191, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34218269

RESUMO

Uveal melanoma (UM) is the most prevalent primary intraocular malignancy in adults, and patients that develop metastases (~50%) survive <1 year, highlighting the urgent need for new therapies. TCGA has recently revealed that a hypoxia gene signature is associated with poor UM patient prognosis. Here we show that expression of hypoxia-regulated collagen prolyl-4-hydroxylase genes P4HA1 and P4HA2 is significantly upregulated in UM patients with metastatic disease and correlates with poor prognosis, suggesting these enzymes might be key tumor drivers. We targeted hypoxia-induced expression of P4HA1/2 in UM with KCN1, a hypoxia inducible factor-1 (HIF-1) pathway inhibitor and found potent inhibition of primary and metastatic disease and extension of animal survival, without overt side effects. At the molecular level, KCN1 antagonized hypoxia-induced expression of P4HA1 and P4HA2, which regulate collagen maturation and deposition in the extracellular matrix. The treatment decreased prolyl hydroxylation, induced proteolytic cleavage and rendered a disordered structure to collagen VI, the main collagen produced by UM, and reduced UM cell invasion. Together, these data demonstrate that extracellular collagen matrix formation can be targeted in UM by inhibiting hypoxia-induced P4HA1 and P4HA2 expression, warranting further development of this strategy in patients with uveal melanoma.


Assuntos
Prolina Dioxigenases do Fator Induzível por Hipóxia , Matriz Extracelular , Humanos , Hidroxilação , Melanoma , Ativação Transcricional , Regulação para Cima , Neoplasias Uveais
15.
J Clin Invest ; 131(6)2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33720050

RESUMO

Glioblastoma (GBM) is composed of heterogeneous tumor cell populations, including those with stem cell properties, termed glioma stem cells (GSCs). GSCs are innately less radiation sensitive than the tumor bulk and are believed to drive GBM formation and recurrence after repeated irradiation. However, it is unclear how GSCs adapt to escape the toxicity of repeated irradiation used in clinical practice. To identify important mediators of adaptive radioresistance in GBM, we generated radioresistant human and mouse GSCs by exposing them to repeat cycles of irradiation. Surviving subpopulations acquired strong radioresistance in vivo, which was accompanied by a reduction in cell proliferation and an increase in cell-cell adhesion and N-cadherin expression. Increasing N-cadherin expression rendered parental GSCs radioresistant, reduced their proliferation, and increased their stemness and intercellular adhesive properties. Conversely, radioresistant GSCs lost their acquired phenotypes upon CRISPR/Cas9-mediated knockout of N-cadherin. Mechanistically, elevated N-cadherin expression resulted in the accumulation of ß-catenin at the cell surface, which suppressed Wnt/ß-catenin proliferative signaling, reduced neural differentiation, and protected against apoptosis through Clusterin secretion. N-cadherin upregulation was induced by radiation-induced IGF1 secretion, and the radiation resistance phenotype could be reverted with picropodophyllin, a clinically applicable blood-brain-barrier permeable IGF1 receptor inhibitor, supporting clinical translation.


Assuntos
Antígenos CD/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/radioterapia , Caderinas/metabolismo , Glioblastoma/metabolismo , Glioblastoma/radioterapia , Tolerância a Radiação/fisiologia , Adaptação Fisiológica , Animais , Antígenos CD/genética , Apoptose , Neoplasias Encefálicas/patologia , Caderinas/antagonistas & inibidores , Caderinas/genética , Adesão Celular , Linhagem Celular Tumoral , Proliferação de Células , Clusterina/antagonistas & inibidores , Clusterina/genética , Clusterina/metabolismo , Feminino , Técnicas de Inativação de Genes , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/efeitos da radiação , Tolerância a Radiação/genética , Regulação para Cima , Via de Sinalização Wnt , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Neurooncol ; 99(2): 177-85, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20066473

RESUMO

Irinotecan (CPT-11) has shown emerging promise in the treatment of malignant gliomas. It is believed the mechanism of action of irinotecan is to sensitize glioma cells to the cytotoxic action of radiation therapy and alkylating agents. However, clinical trials using weekly or three-weekly doses of CPT-11 have demonstrated imaging responses in only 10-15% of patients. In this study, we evaluated another mechanism of action, angiosuppression by CPT-11 of ACNU-resistant gliomas, using a metronomic administration schedule. Two different types of treatment, (1) conventional and (2) metronomic, were applied to the subcutaneous U87 model. We found that metronomic administration of CPT-11 significantly inhibited malignant glioma growth by inhibiting angiogenesis; this treatment procedure reduced the number of tumor vessels and the area of hypoxic lesions and reduced expression of VEGF and HIF-1alpha, the most important angiogenic factors in gliomas. Metronomic treatment was superior to conventional treatment with regard to the severe systemic side effect of body weight loss. The growth inhibitory effect was very similar for both low and high doses of CPT-11. These angiosuppressive effects of CPT-11 show promise for another use of CPT-11 in metronomic and scheduled angiosuppressive chemotherapy with low dose and long-term administration for malignant gliomas without systemic side effects.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias Encefálicas/prevenção & controle , Camptotecina/análogos & derivados , Proliferação de Células/efeitos dos fármacos , Glioma/prevenção & controle , Neovascularização Patológica/prevenção & controle , Inibidores da Angiogênese/uso terapêutico , Animais , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/patologia , Camptotecina/uso terapêutico , Glioma/irrigação sanguínea , Glioma/patologia , Hipóxia/tratamento farmacológico , Hipóxia/genética , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Técnicas Imunoenzimáticas , Irinotecano , Masculino , Camundongos , Camundongos SCID , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Taxa de Sobrevida , Células Tumorais Cultivadas , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Cancer Res ; 80(20): 4439-4450, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32928920

RESUMO

Death receptor Fas-mediated apoptosis not only eliminates nonspecific and autoreactive B cells but also plays a major role in antitumor immunity. However, the possible mechanisms underlying impairment of Fas-mediated induction of apoptosis during lymphomagenesis remain unknown. In this study, we employed our developed syngeneic lymphoma model to demonstrate that downregulation of Fas is required for both lymphoma development and lymphoma cell survival to evade immune cytotoxicity. CD40 signal activation significantly restored Fas expression and thereby induced apoptosis after Fas ligand treatment in both mouse and human lymphoma cells. Nevertheless, certain human lymphoma cell lines were found to be resistant to Fas-mediated apoptosis, with Livin (melanoma inhibitor of apoptosis protein; ML-IAP) identified as a driver of such resistance. High expression of Livin and low expression of Fas were associated with poor prognosis in patients with aggressive non-Hodgkin's lymphoma. Livin expression was tightly driven by bromodomain and extraterminal (BET) proteins BRD4 and BRD2, suggesting that Livin expression is epigenetically regulated in refractory lymphoma cells to protect them from Fas-mediated apoptosis. Accordingly, the combination of CD40-mediated Fas restoration with targeting of the BET proteins-Livin axis may serve as a promising immunotherapeutic strategy for refractory B-cell lymphoma. SIGNIFICANCE: These findings yield insights into identifying risk factors in refractory lymphoma and provide a promising therapy for tumors resistant to Fas-mediated antitumor immunity. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/20/4439/F1.large.jpg.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Inibidoras de Apoptose/imunologia , Linfoma Difuso de Grandes Células B/imunologia , Linfoma Difuso de Grandes Células B/patologia , Proteínas de Neoplasias/imunologia , Receptor fas/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antígenos CD40/imunologia , Antígenos CD40/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Criança , Pré-Escolar , Citotoxicidade Imunológica , Feminino , Humanos , Proteínas Inibidoras de Apoptose/genética , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/mortalidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Células NIH 3T3 , Proteínas de Neoplasias/genética , Neoplasias Experimentais/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto Jovem , Receptor fas/genética , Receptor fas/metabolismo
18.
Clin Cancer Res ; 26(11): 2711-2724, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31969339

RESUMO

PURPOSE: Exploitation of altered glycosylation in cancer is a major goal for the design of new cancer therapy. Here, we designed a novel secreted chimeric signal peptide-Galectin-3 conjugate (sGal-3) and investigated its ability to induce cancer-specific cell death by targeting aberrantly N-glycosylated cell surface receptors on cancer cells. EXPERIMENTAL DESIGN: sGal-3 was genetically engineered from Gal-3 by extending its N-terminus with a noncleavable signal peptide from tissue plasminogen activator. sGal-3 killing ability was tested on normal and tumor cells in vitro and its antitumor activity was evaluated in subcutaneous lung cancer and orthotopic malignant glioma models. The mechanism of killing was investigated through assays detecting sGal-3 interaction with specific glycans on the surface of tumor cells and the elicited downstream proapoptotic signaling. RESULTS: We found sGal-3 preferentially binds to ß1 integrin on the surface of tumor cells due to aberrant N-glycosylation resulting from cancer-associated upregulation of several glycosyltransferases. This interaction induces potent cancer-specific death by triggering an oncoglycan-ß1/calpain/caspase-9 proapoptotic signaling cascade. sGal-3 could reduce the growth of subcutaneous lung cancers and malignant gliomas in brain, leading to increased animal survival. CONCLUSIONS: We demonstrate that sGal-3 kills aberrantly glycosylated tumor cells and antagonizes tumor growth through a novel integrin ß1-dependent cell-extrinsic apoptotic pathway. These findings provide proof-of-principle that aberrant N-oncoglycans represent valid cancer targets and support further translation of the chimeric sGal-3 peptide conjugate for cancer therapy.


Assuntos
Apoptose , Proteínas Sanguíneas/metabolismo , Galectinas/metabolismo , Glioma/tratamento farmacológico , Integrina beta1/metabolismo , Fragmentos de Peptídeos/farmacologia , Sinais Direcionadores de Proteínas , Animais , Proteínas Sanguíneas/genética , Proliferação de Células , Feminino , Galectinas/genética , Glioma/metabolismo , Glioma/patologia , Glicosilação , Humanos , Integrina beta1/genética , Camundongos , Camundongos Nus , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Int J Oncol ; 54(1): 188-198, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30387835

RESUMO

Renal cell carcinoma (RCC), which is a type of cancer found in the kidney tubule, is among the 10 most frequently occurring human cancers. Regucalcin plays a potential role as a regulator of transcriptional activity, and its downregulated expression or activity may contribute to the promotion of human cancers. In this study, we investigated the involvement of regucalcin in human RCC. Regucalcin expression was compared in 23 normal and 29 tumor samples of kidney cortex tissues of patients with clear cell RCC obtained through the Gene Expression Omnibus (GEO) database (GSE36895). Regucalcin expression was downregulated in the tumor tissues. The prolonged survival of patients with clear cell RCC was demonstrated to be associated with a higher regucalcin gene expression in the TCGA dataset. The overexpression of regucalcin suppressed the colony formation, proliferation and the death of human clear cell RCC A498 cells in vitro. Mechanistically, the overexpression of regucalcin induced the G1 and G2/M phase cell cycle arrest of A498 cells through the suppression of multiple signaling components, including Ras, PI3 kinase, Akt and mitogen­activated protein (MAP) kinase. Importantly, the overexpression of regucalcin led to an elevation in the levels of the tumor suppressors, p53, Rb and the cell cycle inhibitor, p21. The levels of the transcription factors, c­fos, c­jun, nuclear factor­κB p65, ß­catenin and signal transducer and activator of transcription 3, were suppressed by regucalcin overexpression. On the whole, the findings of this study suggest that regucalcin plays a suppressive role in the promotion of human RCC. The overexpression of regucalcin by gene delivery systems may thus prove to be a novel therapeutic strategy for RCC.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Carcinoma de Células Renais/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Renais/genética , Regulação para Cima , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Técnicas In Vitro , Transdução de Sinais , Análise de Sobrevida
20.
Cancer Immunol Res ; 7(4): 544-551, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30782668

RESUMO

Gut microbiota and their metabolites are instrumental in regulating homeostasis at intestinal and extraintestinal sites. However, the complex effects of prenatal and early postnatal microbial exposure on adult health and disease outcomes remain incompletely understood. Here, we showed that mice raised under germ-free conditions until weaning and then transferred to specific pathogen-free (SPF) conditions harbored altered microbiota composition, augmented inflammatory cytokine and chemokine expression, and were hyper-susceptible to colitis-associated tumorigenesis later in adulthood. Increased number and size of colon tumors and intestinal epithelial cell proliferation in recolonized germ-free mice were associated with augmented intratumoral CXCL1, CXCL2, and CXCL5 expression and granulocytic myeloid-derived suppressor cell (G-MDSC) accumulation. Consistent with these findings, CXCR2 neutralization in recolonized germ-free mice completely reversed the exacerbated susceptibility to colitis-associated tumorigenesis. Collectively, our findings highlight a crucial role for early-life microbial exposure in establishing intestinal homeostasis that restrains colon cancer in adulthood.


Assuntos
Colo/microbiologia , Neoplasias do Colo/microbiologia , Microbiota , Células Supressoras Mieloides , Animais , Carcinogênese , Quimiocinas/imunologia , Colite/complicações , Colite/microbiologia , Colo/patologia , Neoplasias do Colo/etiologia , Neoplasias do Colo/patologia , Fezes/microbiologia , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , RNA Bacteriano , RNA Ribossômico 16S
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA