Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Radioact ; 264: 107198, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37178632

RESUMO

One of the current pathways to radiation exposure, caused by the radionuclides discharged during the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, is the inhalation of resuspended 137Cs present in the air. Although wind-induced soil particle resuspension is recognized as a primary resuspension mechanism, studies regarding the aftermath of the FDNPP accident have suggested that bioaerosols can also be a potential source of atmospheric 137Cs in rural areas, although the quantitative impact on the atmospheric 137Cs concentration is still largely unknown. We propose a model for simulating the 137Cs resuspension as soil particles and bioaerosols in the form of fungal spores, which are regarded as a potential candidate for the source of 137Cs-bearing bioaerosol emission into the air. We apply the model to the difficult-to-return zone (DRZ) near the FDNPP to characterize the relative importance of the two resuspension mechanisms. Our model calculations show that soil particle resuspension is responsible for the surface-air 137Cs observed during winter-spring but could not account for the higher 137Cs concentrations observed in summer-autumn. Higher 137Cs concentrations are reproduced by the emission of 137Cs-bearing bioaerosols (fungal spores) that replenishes the low-level soil particle resuspension in summer-autumn. Our model results show that the accumulation of 137Cs in fungal spores and large emissions of spores characteristic of the rural environment are likely responsible for the presence of biogenic 137Cs in the air, although the former must be experimentally validated. These findings provide vital information for the assessment of the atmospheric 137Cs concentration in the DRZ, as applying the resuspension factor (m-1) from urban areas, where soil particle resuspension would dominate, can lead to a biased estimate of the surface-air 137Cs concentration. Moreover, the influence of bioaerosol 137Cs on the atmospheric 137Cs concentration would last longer, because undecontaminated forests commonly exist within the DRZ.


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos do Solo , Solo , Poeira , Centrais Nucleares , Monitoramento de Radiação/métodos , Radioisótopos de Césio/análise , Poluentes Radioativos do Solo/análise , Japão
2.
Sci Total Environ ; 816: 151587, 2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-34838924

RESUMO

In forests affected by the Fukushima Daiichi Nuclear Power Plant accident, trees became contaminated with 137Cs. However, 137Cs transfer processes determining tree contamination (particularly for stem wood, a prominent commercial resource) remain insufficiently understood. We propose a model for simulating dynamic behavior of 137Cs in a forest tree-litter-soil system and applied it to contaminated forests of cedar plantation and natural oak stand in Fukushima to elucidate relative impact of distinct 137Cs transfer processes determining the tree contamination. The transfer of 137Cs to the trees occurred mostly (>99%) through surface uptake of 137Cs trapped by needles and bark during the fallout. Root uptake of soil 137Cs was several orders of magnitude lower than the surface uptake over a 50-year period following the accident. As a result, internal contamination of the trees proceeded through an enduring recycling (translocation) of 137Cs absorbed on the tree surface. A significant surface uptake of 137Cs through bark was suggested, contributing to 100% (leafless oak tree) and 30% (foliated cedar tree; the remaining uptake occurred at needles) of the total uptake by the trees, although that pathway still needs to be evaluated by experimental evidence. It was suggested that the activity concentration of 137Cs in stem wood of the trees at these sites are currently (as of 2021) decreasing by ~3% per year, mainly through radioactive decay of 137Cs and partly through dilution effect from tree growth. Although further refinement of the model is recommended, for example by including tree species specific 137Cs transportation in stem, these findings provide vital information for planning of forestry reactivation in Fukushima; e.g., removal of forest floor organic layer will not reduce the tree contamination for a long term because of the 137Cs absorption via the tree surface substantially greater than root uptake of 137Cs deposited to the floor.


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos do Solo , Radioisótopos de Césio/análise , Ecossistema , Florestas , Japão , Centrais Nucleares , Poluentes Radioativos do Solo/análise , Árvores
3.
J Environ Radioact ; 238-239: 106721, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34509097

RESUMO

Forests cover approximately 70% of the area contaminated by the Fukushima Daiichi Nuclear Power Plant accident in 2011. Following this severe contamination event, radiocaesium (137Cs) is anticipated to circulate within these forest ecosystems for several decades. Since the accident, a number of models have been constructed to evaluate the past and future dynamics of 137Cs in these forests. To explore the performance and uncertainties of these models we conducted a model inter-comparison exercise using Fukushima data. The main scenario addressed an evergreen needleleaf forest (cedar/cypress), which is the most common and commercially important forest type in Japan. We also tested the models with two forest management scenarios (decontamination by removal of soil surface litter and forest regeneration) and, furthermore, a deciduous broadleaf forest (konara oak) scenario as a preliminary modelling study of this type of forest. After appropriate calibration, the models reproduced the observed data reliably and the ranges of calculated trajectories were narrow in the early phase after the fallout. Successful model performances in the early phase were probably attributable to the availability of comprehensive data characterizing radiocaesium partitioning in the early phase. However, the envelope of the calculated model end points enlarged in long-term simulations over 50 years after the fallout. It is essential to continue repetitive verification/validation processes using decadal data for various forest types to improve the models and to update the forecasting capacity of the models.


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos do Solo , Radioisótopos de Césio/análise , Ecossistema , Florestas , Japão , Poluentes Radioativos do Solo/análise
4.
Sci Total Environ ; 704: 135319, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31896232

RESUMO

Terrestrial environments impacted by atmospheric releases of 129I from nuclear plants become contaminated with 129I; however, the relative importance of each land-surface 129I-transfer pathway in the process of the contamination is not well understood. In this study, transfers of 129I in an atmosphere-vegetation-soil system are modeled and incorporated into an existing land-surface model (SOLVEG-II). The model was also applied to the observed transfer of 129I at a vegetated field impacted by atmospheric releases of 129I (as gaseous I2 and CH3I) from the Rokkasho reprocessing plant, Japan, during 2007. Results from the model calculation and inter-comparison of the results with the measured environmental samples provide insights into the relative importance of each 129I-transfer pathway in the processes of 129I contamination of leaves and soil. The model calculation revealed that contamination of leaves of wild bamboo grasses was mostly caused by foliar adsorption of inorganic 129I (81%) following wet deposition of 129I. In contrast, accumulation of 129I in the leaf due to foliar uptake of atmospheric 129I2 (2%) was lesser. Root uptake of soil 129I was low, accounted for 17% of the 129I of the leaf. The low root-uptake of 129I in spite of the 129I contained in the soil was ascribed to the fact that the most fraction (over 90%) of the soil 129I existed in "soil-fixed" (not plant-available) form. Regarding the 129I-transfer to the soil, wet deposition of 129I was ten-fold more effective than dry deposition of atmospheric 129I2; however, the deposition of 129I during the year represented only 2% of the model-assumed 129I that pre-existed in the soil; indicating the importance of long-term accumulation of 129I in terrestrial environments. The model calculation also revealed that root uptake of inorganic 129I can be more influential than volatilization by methylation in exportation of 129I from soil.

5.
J Environ Radioact ; 201: 5-18, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30721755

RESUMO

14C-labelled methane (14CH4) released from deep underground radioactive waste disposal facilities can be a below-ground source of 14CO2 owing to microbial oxidation of 14CH4 to 14CO2 in soils. Environmental 14C models assume that the transfer of 14CO2 from soil to plant occurs via foliar uptake of 14CO2. Nevertheless, the importance of 14CO2 root uptake is not well understood. In the present study, below-ground transport and oxidation of 14CH4 were modeled and incorporated into an existing land-surface 14CO2 model (SOLVEG-II) to assess the relative importance of root uptake and foliar uptake on 14CO2 transfer from soil to plants. Performance of the model in calculating the below-ground dynamics of 14CH4 was validated by simulating a field experiment of 13CH4 (as a substitute for 14CH4) injection into subsoil in a wheat field in the UK. The proposed model simulation was then applied to 14C transfer in a hypothetical ecosystem impacted by continuous 14CH4 input from the water table (bottom of 1-m thick soil), which simulated continuous release of 14CH4 from a deep underground radioactive waste disposal facility. The contrast between the results obtained from the model calculation that assumed different distributions of roots (rooting depths of 11 cm, or 97 cm) and methane oxidation (characterized by e-folding depths of 5 cm, 20 cm, or 80 cm) in the soil provided insight into the relative importance of root uptake and foliar uptake pathways. In the shallowly rooted ecosystem with rooting depth of 11 cm, foliar uptake of 14CO2 was significant, accounting for 80% of the 14C accumulation (as organic 14C) in the plant (leaf compartment). By contrast, in a deeply rooted ecosystem (rooting depth of 97 cm), where the root penetrated to depths close to the water-table, more than half (63%) the 14C accumulated in the plant was transferred via the root uptake pathway. We found that 14CO2 root uptake (thus 14C accumulation in the plant) in this ecosystem depended on the distribution of methane oxidation in the soil; all 14C accumulated in the plant was transferred by the root uptake pathway when methane oxidation occurred at considerable depths (e-folding depths of 20 cm, or 80 cm) in the soil. The high level of 14CO2 root uptake was ascribed to the oxidation of added 14CH4 (i.e., production of 14CO2) in the deep part of the soil and the subsequent high level of root uptake of the deep soil-water containing 14CO2. These results indicate that 14CO2 root uptake contributes significantly to 14CO2 transfer to plants if 14CH4 oxidation occurs at great depths and roots penetrate deeply into the soil. It is recommended that current environmental 14C models must be refined to consider the importance of the root uptake pathway to ensure that dose estimates of 14CH4 release from deep underground waste disposal facilities are accurate.


Assuntos
Dióxido de Carbono/metabolismo , Radioisótopos de Carbono/metabolismo , Metano/metabolismo , Modelos Teóricos , Raízes de Plantas/metabolismo , Poluentes Radioativos/metabolismo , Triticum/metabolismo , Folhas de Planta/metabolismo , Resíduos Radioativos , Instalações de Eliminação de Resíduos
6.
J Environ Radioact ; 97(2-3): 103-15, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17475373

RESUMO

Measurements of oxidation rate of hydrogen isotopic gases by soil were made to model HT oxidation rate by soil. Soil was sampled at a cultivated farmland and laboratory measurements of the oxidation rate of H(2) and D(2) gases simulating HT gas were carried out under controlled conditions of soil. The oxidation rate increased with increase of H(2) or D(2) concentration in air and nearly saturated at high concentration. The oxidation rate was low under extremely dry and wet soil conditions and was the highest at soil water content of 8-14 w/w%. The oxidation rate increased exponentially with increasing soil temperature and was the highest at 46 degrees C. Michaelis constant K(m) increased exponentially with increasing soil temperature. Oxidation rate of H(2) was generally higher than that of D(2), while K(m) of H(2) was generally lower than that of D(2). From these results, oxidation rate of HT was modeled as a product of the functions that represent dependency on each soil factor.


Assuntos
Deutério/metabolismo , Hidrogênio/metabolismo , Poluentes Radioativos do Solo/metabolismo , Trítio/metabolismo , Oxirredução , Microbiologia do Solo , Temperatura , Água/análise
7.
J Environ Radioact ; 178-179: 212-231, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28910625

RESUMO

Environmental transfer models assume that organically-bound tritium (OBT) is formed directly from tissue-free water tritium (TFWT) in environmental compartments. Nevertheless, studies in the literature have shown that measured OBT/HTO ratios in environmental samples are variable and generally higher than expected. The importance of soil-to-leaf HTO transfer pathway in controlling the leaf tritium dynamics is not well understood. A model inter-comparison of two tritium transfer models (CTEM-CLASS-TT and SOLVEG-II) was carried out with measured environmental samples from an experimental garden plot set up next to a tritium-processing facility. The garden plot received one of three different irrigation treatments - no external irrigation, irrigation with low tritium water and irrigation with high tritium water. The contrast between the results obtained with the different irrigation treatments provided insights into the impact of soil-to-leaf HTO transfer on the leaf tritium dynamics. Concentrations of TFWT and OBT in the garden plots that were not irrigated or irrigated with low tritium water were variable, responding to the arrival of the HTO-plume from the tritium-processing facility. In contrast, for the plants irrigated with high tritium water, the TFWT concentration remained elevated during the entire experimental period due to a continuous source of high HTO in the soil. Calculated concentrations of OBT in the leaves showed an initial increase followed by quasi-equilibration with the TFWT concentration. In this quasi-equilibrium state, concentrations of OBT remained elevated and unchanged despite the arrivals of the plume. These results from the model inter-comparison demonstrate that soil-to-leaf HTO transfer significantly affects tritium dynamics in leaves and thereby OBT/HTO ratio in the leaf regardless of the atmospheric HTO concentration, only if there is elevated HTO concentrations in the soil. The results of this work indicate that assessment models should be refined to consider the importance of soil-to-leaf HTO transfer to ensure that dose estimates are accurate and conservative.


Assuntos
Modelos Químicos , Monitoramento de Radiação , Trítio/análise , Jardins , Folhas de Planta
8.
Sci Total Environ ; 551-552: 590-604, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26897402

RESUMO

A process-based model for (137)Cs transfer in forest surface environments was developed to assess the dynamic behavior of Fukushima-derived (137)Cs in a Japanese forest. The model simulation successfully reproduced the observed data from 3year migration of (137)Cs in the organic and mineral soil layers at a contaminated forest near Fukushima. The migration of (137)Cs from the organic layer to the mineral soil was explained by the direct deposition pattern on the forest floor and the turnover of litter materials in the organic layer under certain ecological conditions. Long-term predictions indicated that more than 90% of the deposited (137)Cs would remain within the top 5cm of the soil for up to 30years after the accident, suggesting that the forest acts as an effective long-term reservoir of (137)Cs with limited transfer via the groundwater pathway. The model was also used to explore the potential impacts of soil organic matter (SOM) interactions on the mobility and bioavailability of (137)Cs in the soil-plant system. The simulation results for hypothetical organic soils with modified parameters of (137)Cs turnover revealed that the SOM-induced reduction of (137)Cs adsorption elevates the fraction of dissolved (137)Cs in the soil solution, thereby increasing the soil-to-plant transfer of (137)Cs without substantially altering the fractional distribution of (137)Cs in the soil. Slower fixation of (137)Cs on the flayed edge site of clay minerals and enhanced mobilization of the clay-fixed (137)Cs in organic-rich soils also appeared to elevate the soil-to-plant transfer of (137)Cs by increasing the fraction of the soil-adsorbed (exchangeable) (137)Cs. A substantial proportion (approximate 30%-60%) of (137)Cs in these organic-rich soils was transferred to layers deeper than 5cm decades later. These results suggested that SOM influences the behavior of (137)Cs in forests over a prolonged period through alterations of adsorption and fixation in the soil.

9.
J Environ Radioact ; 162-163: 189-204, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27267157

RESUMO

The impacts of carbon uptake by plants on the spatial distribution of radiocarbon (14C) accumulated in vegetation around a nuclear facility were investigated by numerical simulations using a sophisticated land surface 14C model (SOLVEG-II). In the simulation, SOLVEG-II was combined with a mesoscale meteorological model and an atmospheric dispersion model. The model combination was applied to simulate the transfer of 14CO2 and to assess the radiological impact of 14C accumulation in rice grains during test operations of the Rokkasho reprocessing plant (RRP), Japan, in 2007. The calculated 14C-specific activities in rice grains agreed with the observed activities in paddy fields around the RRP within a factor of four. The annual effective dose delivered from 14C in the rice grain was estimated to be less than 0.7 µSv, only 0.07% of the annual effective dose limit of 1 mSv for the public. Numerical experiments of hypothetical continuous atmospheric 14CO2 release from the RRP showed that the 14C-specific activities of rice plants at harvest differed from the annual mean activities in the air. The difference was attributed to seasonal variations in the atmospheric 14CO2 concentration and the growth of the rice plant. Accumulation of 14C in the rice plant significantly increased when 14CO2 releases were limited during daytime hours, compared with the results observed during the nighttime. These results indicated that plant growth stages and diurnal photosynthesis should be considered in predictions of the ingestion dose of 14C for long-term chronic releases and short-term diurnal releases of 14CO2, respectively.


Assuntos
Dióxido de Carbono/metabolismo , Radioisótopos de Carbono/análise , Radioisótopos de Carbono/metabolismo , Modelos Teóricos , Monitoramento de Radiação/métodos , Dióxido de Carbono/análise , Japão , Oryza/metabolismo , Fotossíntese/fisiologia
10.
J Environ Radioact ; 107: 13-22, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22370649

RESUMO

A model simulating transport and exchange for ¹4C (or ¹4CO2) in a land surface ecosystem was developed and the belowground ¹4C accumulation and its impact on vegetation ¹4C accumulation at a hypothetical cultivated field were studied with the model through numerical experiments. The developed model involved physical ¹4CO2 transport in surface atmosphere and soil and physiological ¹4CO2 exchanges in leaves, and was incorporated into a dynamical model (SOLVEG-II) that calculates transport and exchange for heat, water and CO2. The model was tested through a simulation of an existing-experiment on an acute exposure of grape plants to ¹4CO2. The calculated ¹4C amount in leaves agreed with the observations within a factor of 1.7. A hypothetical scenario used for the numerical experiments considered an annual ¹4C input into surface soil layers via ¹4C-enriched foliage or root litter under a continually heightened atmospheric ¹4CO2 concentration. The specific activity of ¹4C in the surface soil layers increased with time and several decades after the start of accumulation it eventually converged to eight times the initial specific activity. At this equilibrium state, the increased belowground ¹4CO2 production enhanced the atmospheric ¹4CO2 level and, consequently, ¹4CO2 uptake by vegetation increased to 1.1 times the control calculated without belowground ¹4C accumulation. The model results also demonstrated that ¹4C accumulated in soil can maintain an enhanced vegetation ¹4C level for at least several decades even after the end of accumulation.


Assuntos
Atmosfera/análise , Dióxido de Carbono/análise , Radioisótopos de Carbono/análise , Solo/química , Radioisótopos de Carbono/metabolismo , Ecossistema , Folhas de Planta/metabolismo , Plantas/metabolismo
11.
J Environ Radioact ; 109: 94-102, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22390945

RESUMO

To investigate the role of belowground root uptake of tritiated water (HTO) in controlling land-surface tritium (T) dynamics, a sophisticated numerical model predicting tritium behavior in an atmosphere-vegetation-soil system was developed, and numerical experiments were conducted using the model. The developed model covered physical tritiated hydrogen (HT) transport in a multilayered atmosphere and soil, as well as microbial oxidation of HT to HTO in the soil, and it was incorporated into a well-established HTO-transfer organically bound tritium (OBT)-formation model. The model performance was tested through the simulation of an existing HT-release experiment. Numerical experiments involving a hypothetical acute HT exposure to a grassland field with a range of rooting depths showed that the HTO release from the leaves to the atmosphere, driven by the root uptake of the deposited HTO, can exceed the HTO evaporation from the ground surface to the atmosphere when root water absorption preferentially occurs beneath the ground surface. Such enhanced soil-leaf-atmosphere HTO transport, caused by the enhanced root HTO uptake, increased HTO concentrations in both the surface atmosphere and in the cellular water of the leaf. Consequently, leaf OBT assimilation calculated for shallow rooting depths increased by nearly an order of magnitude compared to that for large rooting depths.


Assuntos
Raízes de Plantas/metabolismo , Trítio/metabolismo , Atmosfera
12.
J Environ Radioact ; 109: 103-13, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22406754

RESUMO

The atmospheric release of (131)I and (137)Cs in the early phase of the Fukushima Dai-ichi Nuclear Power Plant (FNPP1) accident from March 12 to 14, 2011 was estimated by combining environmental data with atmospheric dispersion simulations under the assumption of a unit release rate (1 Bq h(-1)). For the simulation, WSPEEDI-II computer-based nuclear emergency response system was used. Major releases of (131)I (>10(15) Bq h(-1)) were estimated when air dose rates increased in FNPP1 during the afternoon on March 12 after the hydrogen explosion of Unit 1 and late at night on March 14. The high-concentration plumes discharged during these periods flowed to the northwest and south-southwest directions of FNPP1, respectively. These plumes caused a large amount of dry deposition on the ground surface along their routes. Overall, the spatial pattern of (137)Cs and the increases in the air dose rates observed at the monitoring posts around FNPP1 were reproduced by WSPEEDI-II using estimated release rates. The simulation indicated that air dose rates significantly increased in the south-southwest region of FNPP1 by dry deposition of the high-concentration plume discharged from the night of March 14 to the morning of March 15.


Assuntos
Poluentes Radioativos do Ar/análise , Centrais Nucleares , Liberação Nociva de Radioativos , Radioisótopos/análise , Japão , Monitoramento de Radiação , Incerteza
13.
J Environ Radioact ; 102(9): 813-23, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21665337

RESUMO

A numerical model simulating transport of tritiated water (HTO) in atmosphere-soil-vegetation system, and, accumulation of organically bound tritium (OBT) in vegetative leaves was developed. Characteristic of the model is, for calculating tritium transport, it incorporates a dynamical atmosphere-soil-vegetation model (SOLVEG-II) that calculates transport of heat and water, and, exchange of CO(2). The processes included for calculating tissue free water tritium (TFWT) in leaves are HTO exchange between canopy air and leaf cellular water, root uptake of aqueous HTO in soil, photosynthetic assimilation of TFWT into OBT, and, TFWT formation from OBT through respiration. Tritium fluxes at the last two processes are input to a carbohydrate compartment model in leaves that calculates OBT translocation from leaves and allocation in them, by using photosynthesis and respiration rate in leaves. The developed model was then validated through a simulation of an existing experiment of acute exposure of grape plants to atmospheric HTO. Calculated TFWT concentration in leaves increased soon after the start of HTO exposure, reaching to equilibrium with the atmospheric HTO within a few hours, and then rapidly decreased after the end of the exposure. Calculated non-exchangeable OBT amount in leaves linearly increased during the exposure, and after the exposure, rapidly decreased in daytime, and, moderately nighttime. These variations in the calculated TFWT concentrations and OBT amounts, each mainly controlled by HTO exchange between canopy air and leaf cellular water and by carbohydrates translocation from leaves, fairly agreed with the observations within average errors of a factor of two.


Assuntos
Atmosfera/química , Contaminação Radioativa de Alimentos , Modelos Biológicos , Plantas Comestíveis/fisiologia , Solo/química , Trítio/análise , Algoritmos , Metabolismo dos Carboidratos , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Temperatura Alta , Fotossíntese , Folhas de Planta/química , Folhas de Planta/fisiologia , Transpiração Vegetal , Plantas Comestíveis/química , Estudos de Validação como Assunto , Abastecimento de Água/análise , Abastecimento de Água/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA