Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
PLoS Comput Biol ; 20(4): e1012017, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38626207

RESUMO

Current malaria elimination targets must withstand a colossal challenge-resistance to the current gold standard antimalarial drug, namely artemisinin derivatives. If artemisinin resistance significantly expands to Africa or India, cases and malaria-related deaths are set to increase substantially. Spatial information on the changing levels of artemisinin resistance in Southeast Asia is therefore critical for health organisations to prioritise malaria control measures, but available data on artemisinin resistance are sparse. We use a comprehensive database from the WorldWide Antimalarial Resistance Network on the prevalence of non-synonymous mutations in the Kelch 13 (K13) gene, which are known to be associated with artemisinin resistance, and a Bayesian geostatistical model to produce spatio-temporal predictions of artemisinin resistance. Our maps of estimated prevalence show an expansion of the K13 mutation across the Greater Mekong Subregion from 2000 to 2022. Moreover, the period between 2010 and 2015 demonstrated the most spatial change across the region. Our model and maps provide important insights into the spatial and temporal trends of artemisinin resistance in a way that is not possible using data alone, thereby enabling improved spatial decision support systems on an unprecedented fine-scale spatial resolution. By predicting for the first time spatio-temporal patterns and extents of artemisinin resistance at the subcontinent level, this study provides critical information for supporting malaria elimination goals in Southeast Asia.


Assuntos
Antimaláricos , Artemisininas , Teorema de Bayes , Resistência a Medicamentos , Artemisininas/farmacologia , Sudeste Asiático/epidemiologia , Resistência a Medicamentos/genética , Antimaláricos/farmacologia , Humanos , Análise Espaço-Temporal , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Mutação , Malária/tratamento farmacológico , Malária/epidemiologia , Biologia Computacional , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Malária Falciparum/epidemiologia
2.
Malar J ; 18(1): 12, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30658642

RESUMO

BACKGROUND: Prior to this project, only a handful of online visualizations existed for exploring the published literature on molecular markers of antimalarial drug resistance, and none specifically for the markers associated with Plasmodium falciparum resistance to the partner drugs in artemisinin-based combination therapy (ACT). Molecular information is collected in studies with different designs, using a variety of molecular methodologies and data analysis strategies, making it difficult to compare across studies. The purpose of this project was to develop a free online tool, which visualizes the widely published data on molecular markers of antimalarial drug resistance, starting with the two genes pfcrt and pfmdr-1, associated with resistance to the three most common partner drugs; amodiaquine, lumefantrine and mefloquine. METHODS: A literature review was conducted, and a standardized method was used to extract data from publications, and critical decisions on visualization were made. A global geospatial database was developed of specific pfmdr1 and pfcrt single nucleotide polymorphisms and pfmdr1 copy number variation. An informatics framework was developed that allowed flexibility in development of the tool over time and efficient adaptation to different source data. RESULTS: The database discussed in this paper has pfmdr1 and pfcrt marker prevalence information, from 579 geographic sites in 76 different countries, including results from over 86,000 samples from 456 articles published January 2001-May 2017. The ACT Partner Drugs Molecular Surveyor was launched by the WorldWide Antimalarial Resistance Network (WWARN) in March 2015 and it has attracted over 3000 unique visitors since then. Presented here is a demonstration of how the Surveyor database can be explored to monitor local, temporal changes in the prevalence of molecular markers. Here publications up to May 2017 were included, however the online ACT partner drug Molecular Surveyor is continuously updated with new data and relevant markers. CONCLUSIONS: The WWARN ACT Partner Drugs Molecular Surveyor summarizes data on resistance markers in the pfmdr1 and pfcrt genes. The database is fully accessible, providing users with a rich resource to explore and analyze, and thus utilize a centralized, standardized database for different purposes. This open-source software framework can be adapted to other data, as demonstrated by the subsequent launch of the Artemisinin Molecular Surveyor and the Vivax Surveyor.


Assuntos
Antimaláricos/farmacologia , Bases de Dados como Assunto , Resistência a Múltiplos Medicamentos , Proteínas de Membrana Transportadoras/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Sistemas On-Line , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Amodiaquina/farmacologia , Variações do Número de Cópias de DNA/efeitos dos fármacos , Lumefantrina/farmacologia , Mefloquina/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único/efeitos dos fármacos
3.
Malar J ; 15: 452, 2016 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-27596849

RESUMO

BACKGROUND: Plasmodium falciparum uncomplicated malaria can successfully be treated with an artemisinin-based combination therapy (ACT). However resistance is spreading to the different ACT compounds; the artemisinin derivative and the partner drug. Studies of P. falciparum polymorphisms associated with drug resistance can provide a useful tool to track resistance and guide treatment policy as well as an in-depth understanding of the development and spread of resistance. METHODS: The role of P. falciparum molecular markers in selection of reinfections was assessed in an efficacy trial comparing artesunate-amodiaquine fixed-dose combination with artemether-lumefantrine to treat malaria in Nimba County, Liberia 2008-2009. P. falciparum polymorphisms in pfcrt 76, pfmdr1 86, 184 and 1246, and pfmrp1 876 and 1466 were analysed by PCR-RFLP and pyrosequencing. RESULTS: High baseline prevalence of pfmdr1 1246Y was found in Nimba county (38 %). Pfmdr1 1246Y and pfmdr1 86+184+1246 haplotypes NYY and YYY were selected in reinfections in the artesunate-amodiaquine arm and pfcrt K76, pfmdr1 N86 and pfmdr1 haplotype NFD were selected in artemether-lumefantrine reinfections. Parasites harbouring pfmdr1 1246Y could reinfect earlier after treatment with artesunate-amodiaquine and parasites carrying pfmdr1 N86 could reinfect at higher lumefantrine concentrations in patients treated with artemether-lumefantrine. CONCLUSIONS: Although treatment is highly efficacious, selection of molecular markers in reinfections could indicate a decreased sensitivity or tolerance of parasites to the current treatments and the baseline prevalence of molecular markers should be closely monitored. Since individual drug levels and the day of reinfection were demonstrated to be key determinants for selection of reinfections, this data needs to be collected and taken into account for accurate evaluation of molecular markers for anti-malarial treatments. The protocols for the clinical trial was registered with Current Controlled Trials, under the Identifier Number ISRCTN51688713 on 9 October 2008.


Assuntos
Amodiaquina/uso terapêutico , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Etanolaminas/uso terapêutico , Fluorenos/uso terapêutico , Malária Falciparum/tratamento farmacológico , Proteínas de Membrana Transportadoras/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/genética , Combinação Arteméter e Lumefantrina , Pré-Escolar , DNA de Protozoário/genética , Combinação de Medicamentos , Resistência a Medicamentos , Genótipo , Humanos , Lactente , Libéria , Plasmodium falciparum/genética , Reação em Cadeia da Polimerase , Polimorfismo Genético , Polimorfismo de Fragmento de Restrição , Seleção Genética
4.
Arch Public Health ; 80(1): 41, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35081964

RESUMO

BACKGROUND: Plasmodium falciparum malaria remains a major public health concern in sub-Sahara Africa. Seasonal malaria chemoprevention (SMC) with amodiaquine + sulfadoxine-pyrimethamine is one of the most important preventive interventions. Despite its implementation, the burden of malaria is still very high in children under five years old in Burkina Faso, suggesting that the expected impact of this promising strategy might not be attained. Development of innovative strategies to improve the efficacy of these existing malaria control measures is essential. In such context, we postulate that screening and treatment of malaria in household members of children receiving SMC could greatly improve the impact of SMC intervention and reduce malaria transmission in endemic settings. METHODS: This randomized superiority trial will be carried out in the Nanoro health district, Burkina Faso. The unit of randomisation will be the household and all eligible children from a household will be allocated to the same study group. Households with 3-59 months old children will be assigned to either (i) control group (SMC alone) or (ii) intervention (SMC+ screening of household members with standard Histidin Rich Protein Rapid Diagnostic Test (HRP2-RDT) and treatment if positive). The sample size will be 526 isolated households per arm, i.e., around 1052 children under SMC coverage and an expected 1315 household members. Included children will be followed-up for 24 months to fully cover two consecutive malaria transmission seasons and two SMC cycles. Children will be actively followed-up during the malaria transmission seasons while in the dry seasons the follow-up will be passive. CONCLUSION: The study will respond to a major public health concern by providing evidence of the efficacy of an innovative strategy to boost the impact of SMC intervention.

5.
Am J Trop Med Hyg ; 91(4): 833-843, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25048375

RESUMO

Adequate clinical and parasitologic cure by artemisinin combination therapies relies on the artemisinin component and the partner drug. Polymorphisms in the Plasmodium falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multidrug resistance 1 (pfmdr1) genes are associated with decreased sensitivity to amodiaquine and lumefantrine, but effects of these polymorphisms on therapeutic responses to artesunate-amodiaquine (ASAQ) and artemether-lumefantrine (AL) have not been clearly defined. Individual patient data from 31 clinical trials were harmonized and pooled by using standardized methods from the WorldWide Antimalarial Resistance Network. Data for more than 7,000 patients were analyzed to assess relationships between parasite polymorphisms in pfcrt and pfmdr1 and clinically relevant outcomes after treatment with AL or ASAQ. Presence of the pfmdr1 gene N86 (adjusted hazards ratio = 4.74, 95% confidence interval = 2.29 - 9.78, P < 0.001) and increased pfmdr1 copy number (adjusted hazards ratio = 6.52, 95% confidence interval = 2.36-17.97, P < 0.001 : were significant independent risk factors for recrudescence in patients treated with AL. AL and ASAQ exerted opposing selective effects on single-nucleotide polymorphisms in pfcrt and pfmdr1. Monitoring selection and responding to emerging signs of drug resistance are critical tools for preserving efficacy of artemisinin combination therapies; determination of the prevalence of at least pfcrt K76T and pfmdr1 N86Y should now be routine.


Assuntos
Antimaláricos/uso terapêutico , Malária Falciparum/parasitologia , Proteínas de Membrana Transportadoras/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/genética , Polimorfismo Genético , Proteínas de Protozoários/genética , Substituição de Aminoácidos , Amodiaquina/uso terapêutico , Antimaláricos/farmacologia , Artemeter , Artemisininas/uso terapêutico , Criança , Pré-Escolar , Cloroquina/farmacologia , Conjuntos de Dados como Assunto , Combinação de Medicamentos , Resistência a Medicamentos/genética , Quimioterapia Combinada , Etanolaminas/uso terapêutico , Fluorenos/uso terapêutico , Marcadores Genéticos/genética , Genótipo , Humanos , Lactente , Estimativa de Kaplan-Meier , Lumefantrina , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA