Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Muscle Nerve ; 63(1): 60-67, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32959362

RESUMO

BACKGROUND: Specific force, that is the amount of force generated per unit of muscle tissue, is reduced in patients with facioscapulohumeral muscular dystrophy (FSHD). The causes of reduced specific force and its relation with FSHD disease severity are unknown. METHODS: Quantitative muscle magnetic resonance imaging (MRI), measurement of voluntary maximum force generation and quadriceps force-frequency relationship, and vastus lateralis muscle biopsies were performed in 12 genetically confirmed patients with FSHD and 12 controls. RESULTS: Specific force was reduced by ~33% in all FSHD patients independent of disease severity. Quadriceps force-frequency relationship shifted to the right in severe FSHD compared to controls. Fiber type distribution in vastus lateralis muscle biopsies did not differ between groups. CONCLUSIONS: Reduced quadriceps specific force is present in all FSHD patients regardless of disease severity or fatty infiltration. Early myopathic changes, including fibrosis, and non-muscle factors, such as physical fatigue and musculoskeletal pain, may contribute to reduced specific force.


Assuntos
Músculo Esquelético/patologia , Distrofia Muscular Facioescapuloumeral/patologia , Distrofia Muscular Facioescapuloumeral/fisiopatologia , Músculo Quadríceps/patologia , Índice de Gravidade de Doença , Adulto , Feminino , Fibrose/complicações , Fibrose/fisiopatologia , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/fisiopatologia , Distrofia Muscular Facioescapuloumeral/complicações , Dor Musculoesquelética/complicações , Dor Musculoesquelética/fisiopatologia , Músculo Quadríceps/fisiopatologia , Adulto Jovem
2.
J Clin Invest ; 131(9)2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33755597

RESUMO

Troponin C (TnC) is a critical regulator of skeletal muscle contraction; it binds Ca2+ to activate muscle contraction. Surprisingly, the gene encoding fast skeletal TnC (TNNC2) has not yet been implicated in muscle disease. Here, we report 2 families with pathogenic variants in TNNC2. Patients present with a distinct, dominantly inherited congenital muscle disease. Molecular dynamics simulations suggested that the pathomechanisms by which the variants cause muscle disease include disruption of the binding sites for Ca2+ and for troponin I. In line with these findings, physiological studies in myofibers isolated from patients' biopsies revealed a markedly reduced force response of the sarcomeres to [Ca2+]. This pathomechanism was further confirmed in experiments in which contractile dysfunction was evoked by replacing TnC in myofibers from healthy control subjects with recombinant, mutant TnC. Conversely, the contractile dysfunction of myofibers from patients was repaired by replacing endogenous, mutant TnC with recombinant, wild-type TnC. Finally, we tested the therapeutic potential of the fast skeletal muscle troponin activator tirasemtiv in patients' myofibers and showed that the contractile dysfunction was repaired. Thus, our data reveal that pathogenic variants in TNNC2 cause congenital muscle disease, and they provide therapeutic angles to repair muscle contractility.


Assuntos
Cálcio , Simulação de Dinâmica Molecular , Contração Muscular , Miotonia Congênita , Sarcômeros , Troponina C , Sítios de Ligação , Cálcio/química , Cálcio/metabolismo , Humanos , Miotonia Congênita/genética , Miotonia Congênita/metabolismo , Sarcômeros/química , Sarcômeros/genética , Sarcômeros/metabolismo , Troponina C/química , Troponina C/genética , Troponina C/metabolismo
3.
J Clin Invest ; 130(2): 754-767, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31671076

RESUMO

The mechanisms that modulate the kinetics of muscle relaxation are critically important for muscle function. A prime example of the impact of impaired relaxation kinetics is nemaline myopathy caused by mutations in KBTBD13 (NEM6). In addition to weakness, NEM6 patients have slow muscle relaxation, compromising contractility and daily life activities. The role of KBTBD13 in muscle is unknown, and the pathomechanism underlying NEM6 is undetermined. A combination of transcranial magnetic stimulation-induced muscle relaxation, muscle fiber- and sarcomere-contractility assays, low-angle x-ray diffraction, and superresolution microscopy revealed that the impaired muscle-relaxation kinetics in NEM6 patients are caused by structural changes in the thin filament, a sarcomeric microstructure. Using homology modeling and binding and contractility assays with recombinant KBTBD13, Kbtbd13-knockout and Kbtbd13R408C-knockin mouse models, and a GFP-labeled Kbtbd13-transgenic zebrafish model, we discovered that KBTBD13 binds to actin - a major constituent of the thin filament - and that mutations in KBTBD13 cause structural changes impairing muscle-relaxation kinetics. We propose that this actin-based impaired relaxation is central to NEM6 pathology.


Assuntos
Proteínas Musculares/metabolismo , Relaxamento Muscular , Miopatias da Nemalina/metabolismo , Sarcômeros/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Humanos , Camundongos , Camundongos Knockout , Proteínas Musculares/genética , Miopatias da Nemalina/genética , Miopatias da Nemalina/patologia , Sarcômeros/patologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
4.
Neuromuscul Disord ; 29(6): 468-476, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31101463

RESUMO

Atrophy and fatty infiltration are important causes of muscle weakness in inclusion body myositis (IBM). Muscle weakness can also be caused by reduced specific force; i.e. the amount of force generated per unit of residual muscle tissue. This study investigates in vivo specific force of the quadriceps and ex vivo specific force of single muscle fibers in patients with IBM. We included 8 participants with IBM and 12 healthy controls, who all underwent quantitative muscle testing, quantitative MRI of the quadriceps and paired muscle biopsies of the quadriceps and tibialis anterior. Single muscle fibers were isolated to measure muscle fiber specific force and contractile properties. Both in vivo quadriceps specific force and ex vivo muscle fiber specific force were reduced. Muscle fiber dysfunction was accompanied by reduced active stiffness, which reflects a decrease in the number of attached actin-myosin cross-bridges during activation. Myosin concentration was reduced in IBM fibers. Because reduced specific force contributes to muscle weakness in patients with IBM, therapeutic strategies that augment muscle fiber strength may provide benefit to patients with IBM.


Assuntos
Fibras Musculares Esqueléticas/fisiologia , Debilidade Muscular/fisiopatologia , Miosite de Corpos de Inclusão/fisiopatologia , Adulto , Idoso , Cálcio/metabolismo , Elasticidade , Feminino , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Contração Muscular/fisiologia , Força Muscular/fisiologia , Debilidade Muscular/etiologia , Cadeias Pesadas de Miosina/metabolismo , Miosite de Corpos de Inclusão/complicações , Músculo Quadríceps/fisiopatologia
6.
Skelet Muscle ; 5: 12, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25949787

RESUMO

BACKGROUND: Nemaline myopathy (NM), the most common non-dystrophic congenital myopathy, is characterized by generalized skeletal muscle weakness, often from birth. To date, no therapy exists that enhances the contractile strength of muscles of NM patients. Mutations in NEB, encoding the giant protein nebulin, are the most common cause of NM. The pathophysiology of muscle weakness in NM patients with NEB mutations (NEB-NM) includes a lower calcium-sensitivity of force generation. We propose that the lower calcium-sensitivity of force generation in NEB-NM offers a therapeutic target. Levosimendan is a calcium sensitizer that is approved for use in humans and has been developed to target cardiac muscle fibers. It exerts its effect through binding to slow skeletal/cardiac troponin C. As slow skeletal/cardiac troponin C is also the dominant troponin C isoform in slow-twitch skeletal muscle fibers, we hypothesized that levosimendan improves slow-twitch muscle fiber strength at submaximal levels of activation in patients with NEB-NM. METHODS: To test whether levosimendan affects force production, permeabilized slow-twitch muscle fibers isolated from biopsies of NEB-NM patients and controls were exposed to levosimendan and the force response was measured. RESULTS: No effect of levosimendan on muscle fiber force in NEB-NM and control skeletal muscle fibers was found, both at a submaximal calcium level using incremental levosimendan concentrations, and at incremental calcium concentrations in the presence of levosimendan. In contrast, levosimendan did significantly increase the calcium-sensitivity of force in human single cardiomyocytes. Protein analysis confirmed that the slow skeletal/cardiac troponin C isoform was present in the skeletal muscle fibers tested. CONCLUSIONS: These findings indicate that levosimendan does not improve the contractility in human skeletal muscle fibers, and do not provide rationale for using levosimendan as a therapeutic to restore muscle weakness in NEB-NM patients. We stress the importance of searching for compounds that improve the calcium-sensitivity of force generation of slow-twitch muscle fibers. Such compounds provide an appealing approach to restore muscle force in patients with NEB-NM, and also in patients with other neuromuscular disorders.

7.
Int J Physiol Pathophysiol Pharmacol ; 3(3): 167-75, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21941608

RESUMO

Introduction. Recent work revealed the development of marked muscle fiber weakness in the diaphragm, but not in the non-respiratory latissimus dorsi, during thoracic surgery. To disentangle the molecular processes that underlie the development of diaphragm muscle fiber weakness during thoracic surgery, we studied changes in the gene expression profile. Methods. Serial biopsies from the diaphragm and the latissimus dorsi muscle were obtained from four patients during thoracotomy for resection of a tumor in the right lung. Biopsies were taken as soon as the diaphragm had been exposed (t0) and again after two hours (t2). Gobal differences in gene expression in diaphragm biopsies were assessed by microarray analysis. Results. 346 differentially expressed gene transcripts were found in the diaphragm at t2 vs. t0. Pathway analysis revealed that genes associated with inflammation (83 genes; p<0.0001) and cell death (118 genes, p<0.0001) pathways were significantly overexpressed at t2. Of the 346 differentially expressed genes in the diaphragm at t2, 258 were also differential in the latissimus dorsi muscle, with the direction of change being identical for all differentially expressed genes. In addition, latissimus dorsi showed exclusive upregula-ton of negative regulators of cell death. Conclusions. Two hours of thoracic surgery result in rapid and profound changes in expression of inflammatory response and apoptotic genes in the diaphragm. The apoptotic response was stronger in the diaphragm than in the latissiums dorsi. These findings suggest that the development of selective diaphragm muscle fiber weakness in these patients might be related to an exaggerated apoptotic response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA