Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890426

RESUMO

Cell-state density characterizes the distribution of cells along phenotypic landscapes and is crucial for unraveling the mechanisms that drive diverse biological processes. Here, we present Mellon, an algorithm for estimation of cell-state densities from high-dimensional representations of single-cell data. We demonstrate Mellon's efficacy by dissecting the density landscape of differentiating systems, revealing a consistent pattern of high-density regions corresponding to major cell types intertwined with low-density, rare transitory states. We present evidence implicating enhancer priming and the activation of master regulators in emergence of these transitory states. Mellon offers the flexibility to perform temporal interpolation of time-series data, providing a detailed view of cell-state dynamics during developmental processes. Mellon facilitates density estimation across various single-cell data modalities, scaling linearly with the number of cells. Our work underscores the importance of cell-state density in understanding the differentiation processes, and the potential of Mellon to provide insights into mechanisms guiding biological trajectories.

2.
Mol Med ; 30(1): 19, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302875

RESUMO

BACKGROUND: Clinical manifestation of prostate cancer (PCa) is highly variable. Aggressive tumors require radical treatment while clinically non-significant ones may be suitable for active surveillance. We previously developed the prognostic ProstaTrend RNA signature based on transcriptome-wide microarray and RNA-sequencing (RNA-Seq) analyses, primarily of prostatectomy specimens. An RNA-Seq study of formalin-fixed paraffin-embedded (FFPE) tumor biopsies has now allowed us to use this test as a basis for the development of a novel test that is applicable to FFPE biopsies as a tool for early routine PCa diagnostics. METHODS: All patients of the FFPE biopsy cohort were treated by radical prostatectomy and median follow-up for biochemical recurrence (BCR) was 9 years. Based on the transcriptome data of 176 FFPE biopsies, we filtered ProstaTrend for genes susceptible to FFPE-associated degradation via regression analysis. ProstaTrend was additionally restricted to genes with concordant prognostic effects in the RNA-Seq TCGA prostate adenocarcinoma (PRAD) cohort to ensure robust and broad applicability. The prognostic relevance of the refined Transcriptomic Risk Score (TRS) was analyzed by Kaplan-Meier curves and Cox-regression models in our FFPE-biopsy cohort and 9 other public datasets from PCa patients with BCR as primary endpoint. In addition, we developed a prostate single-cell atlas of 41 PCa patients from 5 publicly available studies to analyze gene expression of ProstaTrend genes in different cell compartments. RESULTS: Validation of the TRS using the original ProstaTrend signature in the cohort of FFPE biopsies revealed a relevant impact of FFPE-associated degradation on gene expression and consequently no significant association with prognosis (Cox-regression, p-value > 0.05) in FFPE tissue. However, the TRS based on the new version of the ProstaTrend-ffpe signature, which included 204 genes (of originally 1396 genes), was significantly associated with BCR in the FFPE biopsy cohort (Cox-regression p-value < 0.001) and retained prognostic relevance when adjusted for Gleason Grade Groups. We confirmed a significant association with BCR in 9 independent cohorts including 1109 patients. Comparison of the prognostic performance of the TRS with 17 other prognostically relevant PCa panels revealed that ProstaTrend-ffpe was among the best-ranked panels. We generated a PCa cell atlas to associate ProstaTrend genes with cell lineages or cell types. Tumor-specific luminal cells have a significantly higher TRS than normal luminal cells in all analyzed datasets. In addition, TRS of epithelial and luminal cells was correlated with increased Gleason score in 3 studies. CONCLUSIONS: We developed a prognostic gene-expression signature for PCa that can be applied to FFPE biopsies and may be suitable to support clinical decision-making.


Assuntos
Neoplasias da Próstata , Transcriptoma , Masculino , Humanos , Inclusão em Parafina , Perfilação da Expressão Gênica , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Fatores de Risco , Formaldeído , RNA , Biópsia
3.
BMC Cancer ; 23(1): 575, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349736

RESUMO

BACKGROUND: Prostate cancer (PCa) is one of the most prevalent cancers worldwide. The clinical manifestations and molecular characteristics of PCa are highly variable. Aggressive types require radical treatment, whereas indolent ones may be suitable for active surveillance or organ-preserving focal therapies. Patient stratification by clinical or pathological risk categories still lacks sufficient precision. Incorporating molecular biomarkers, such as transcriptome-wide expression signatures, improves patient stratification but so far excludes chromosomal rearrangements. In this study, we investigated gene fusions in PCa, characterized potential novel candidates, and explored their role as prognostic markers for PCa progression. METHODS: We analyzed 630 patients in four cohorts with varying traits regarding sequencing protocols, sample conservation, and PCa risk group. The datasets included transcriptome-wide expression and matched clinical follow-up data to detect and characterize gene fusions in PCa. With the fusion calling software Arriba, we computationally predicted gene fusions. Following detection, we annotated the gene fusions using published databases for gene fusions in cancer. To relate the occurrence of gene fusions to Gleason Grading Groups and disease prognosis, we performed survival analyses using the Kaplan-Meier estimator, log-rank test, and Cox regression. RESULTS: Our analyses identified two potential novel gene fusions, MBTTPS2,L0XNC01::SMS and AMACR::AMACR. These fusions were detected in all four studied cohorts, providing compelling evidence for the validity of these fusions and their relevance in PCa. We also found that the number of gene fusions detected in a patient sample was significantly associated with the time to biochemical recurrence in two of the four cohorts (log-rank test, p-value < 0.05 for both cohorts). This was also confirmed after adjusting the prognostic model for Gleason Grading Groups (Cox regression, p-values < 0.05). CONCLUSIONS: Our gene fusion characterization workflow revealed two potential novel fusions specific for PCa. We found evidence that the number of gene fusions was associated with the prognosis of PCa. However, as the quantitative correlations were only moderately strong, further validation and assessment of clinical value is required before potential application.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Prognóstico , Neoplasias da Próstata/patologia , Gradação de Tumores , Transcriptoma , Fusão Gênica , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
4.
Res Sq ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38645152

RESUMO

With the growing number of single-cell analysis tools, benchmarks are increasingly important to guide analysis and method development. However, a lack of standardisation and extensibility in current benchmarks limits their usability, longevity, and relevance to the community. We present Open Problems, a living, extensible, community-guided benchmarking platform including 10 current single-cell tasks that we envision will raise standards for the selection, evaluation, and development of methods in single-cell analysis.

5.
bioRxiv ; 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38234854

RESUMO

Chromosomal translocations involving the Lysine-Methyl-Tansferase-2A ( KMT2A ) locus generate potent oncogenes that cause highly aggressive acute leukemias 1 . KMT2A and the most frequent translocation partners encode proteins that interact with DNA to regulate developmental gene expression 2 . KMT2A-oncogenic fusion proteins (oncoproteins) contribute to the epigenetic mechanisms that allow KMT2A -rearranged leukemias to evade targeted therapies. By profiling the oncoprotein-target sites of 34 KMT2A -rearranged leukemia samples, we find that the genomic enrichment of oncoprotein binding is highly variable between samples. At high levels of expression, the oncoproteins preferentially activate either the lymphoid or myeloid lineage program depending on the fusion partner. These fusion-partner-dependent binding sites correspond to the frequencies of each mutation in acute lymphoid leukemia versus acute myeloid leukemia. By profiling a sample that underwent a lymphoid-to-myeloid lineage switching event in response to lymphoid-directed treatment, we find the global oncoprotein levels are reduced and the oncoprotein-target gene network changes. At lower levels of expression, the oncoprotein shifts to a non-canonical regulatory program that favors the myeloid lineage, and in a subset of resistant patients, the Menin inhibitor Revumenib induces a similar response. The dynamic shifts in KMT2A oncoproteins we describe likely contribute to epigenetic resistance of KMT2A -rearranged leukemias to targeted therapies.

6.
Genome Biol ; 23(1): 81, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35300717

RESUMO

Cleavage Under Targets and Tagmentation (CUT&Tag) is an antibody-directed transposase tethering strategy for in situ chromatin profiling in small samples and single cells. We describe a modified CUT&Tag protocol using a mixture of an antibody to the initiation form of RNA polymerase II (Pol2 Serine-5 phosphate) and an antibody to repressive Polycomb domains (H3K27me3) followed by computational signal deconvolution to produce high-resolution maps of both the active and repressive regulomes in single cells. The ability to seamlessly map active promoters, enhancers, and repressive regulatory elements using a single workflow provides a complete regulome profiling strategy suitable for high-throughput single-cell platforms.


Assuntos
Cromatina , Histonas , Cromatina/genética , Histonas/metabolismo , RNA Polimerase II/genética , Sequências Reguladoras de Ácido Nucleico , Transposases/metabolismo
7.
Eur Urol ; 78(3): 452-459, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32631745

RESUMO

BACKGROUND: Prostate cancer (PCa) is the most prevalent solid cancer among men in Western Countries. The clinical behavior of localized PCa is highly variable. Some cancers are aggressive leading to death, while others can even be monitored safely. Hence, there is a high clinical need for precise biomarkers for identification of aggressive disease in addition to established clinical parameters. OBJECTIVE: To develop an RNA expression-based score for the prediction of PCa prognosis that facilitates clinical decision making. DESIGN, SETTING, AND PARTICIPANTS: We assessed 233 tissue specimens of PCa patients with long-term follow-up data from fresh-frozen radical prostatectomies (RPs), from formalin-fixed and paraffin-embedded RP specimens and biopsies by transcriptome-wide next-generation sequencing and customized expression microarrays. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: We applied Cox proportional hazard models to the cohorts from different platforms and specimen types. Evidence from these models was combined by fixed-effect meta-analysis to identify genes predictive of the time to death of disease (DoD). Genes were combined by a weighted median approach into a prognostic score called ProstaTrend and transferred for the prediction of biochemical recurrence (BCR) after RP in an independent cohort of The Cancer Genome Atlas (TCGA). RESULTS AND LIMITATIONS: ProstaTrend comprising ∼1400 genes was significantly associated with DoD in the training cohort of PCa patients treated by RP (leave-one-out cross-validation, Cox regression: p=2e-09) and with BCR in the TCGA validation cohort (Cox regression: p=3e-06). The prognostic impact persisted after multivariable Cox regression analysis adjusting for Gleason grading group (GG) ≥3 and resection status (p=0.001; DoD, training cohort) and for GG≥3, pathological stage ≥T3, and resection state (p=0.037; BCR, validation cohort). CONCLUSIONS: ProstaTrend is a transcriptome-based score that predicts DoD and BCR in cohorts of PCa patients treated with RP. PATIENT SUMMARY: ProstaTrend provides molecular patient risk stratification after radical prostatectomy.


Assuntos
Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , RNA Neoplásico/biossíntese , Transcriptoma , Humanos , Masculino , Análise Multivariada , Prognóstico , Neoplasias da Próstata/química , Neoplasias da Próstata/mortalidade , RNA Neoplásico/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA