Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Br J Clin Pharmacol ; 89(7): 2144-2159, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36740771

RESUMO

INTRODUCTION: The recent introduction of the European Medical Device Regulation poses stricter legislation for manufacturers developing medical devices in the EU. Many devices have been placed into a higher risk category, thus requiring more data before market approval, and a much larger focus has been placed on safety. For implantable and Class III devices, the highest risk class, clinical evidence is a necessity. However, the requirements of clinical study design and developmental outcomes are only described in general terms due to the diversity of devices. METHODS: A structured approach to determining the requirements for the clinical development of high-risk medical devices is introduced, utilizing the question-based development framework, which is already used for pharmaceutical drug development. An example of a novel implantable device for haemodialysis demonstrates how to set up a relevant target product profile defining the device requirements and criteria. The framework can be used in the medical device design phase to define specific questions to be answered during the ensuing clinical development, based upon five general questions, specified by the question-based framework. RESULTS: The result is a clear and evaluable overview of requirements and methodologies to verify and track these requirements in the clinical development phase. Development organizations will be guided to the optimal route, also to abandon projects destined for failure early on to minimize development risks. CONCLUSION: The framework could facilitate communication with funding agencies, regulators and clinicians, while highlighting remaining 'known unknowns' that require answering in the post-market phase after sufficient benefit is established relative to the risks.


Assuntos
Comunicação , Desenvolvimento de Medicamentos , Humanos , Desenho de Equipamento
2.
PLoS One ; 15(7): e0236239, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32692758

RESUMO

Given the current shortage of respirator masks and the resulting lack of personal protective equipment for use by clinical staff, we examined bottom-up solutions that would allow hospitals to fabricate respirator masks that: (i) meet requirements in terms of filtering capacities, (ii) are easy to produce rapidly and locally, and (iii) can be constructed using materials commonly available in hospitals worldwide. We found that Halyard H300 material used for wrapping of surgical instruments and routinely available in hospitals, met these criteria. Specifically, three layers of material achieved a filter efficiency of 94%, 99%, and 100% for 0.3 µm, 0.5 µm, and 3.0 µm particles, respectively; importantly, these values are close to the efficiency provided by FFP2 and N95 masks. After re-sterilization up to 5 times, the filter's efficiency remains sufficiently high for use as an FFP1 respirator mask. Finally, using only one layer of the material satisfies the criteria for use as a 'surgical mask'. This material can therefore be used to help protect hospital staff and other healthcare professionals who require access to high quality masks but lack commercially available solutions.


Assuntos
Máscaras , Procedimentos Cirúrgicos Operatórios , Ventiladores Mecânicos , Tamanho da Partícula , Esterilização
3.
IEEE Trans Biomed Eng ; 67(12): 3452-3463, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32746002

RESUMO

OBJECTIVE: Intraoperative palpation is a surgical gesture jeopardized by the lack of haptic feedback which affects robotic minimally invasive surgery. Restoring the force reflection in teleoperated systems may improve both surgeons' performance and procedures' outcome. METHODS: A force-based sensing approach was developed, based on a cable-driven parallel manipulator with anticipated seamless and low-cost integration capabilities in teleoperated robotic surgery. No force sensor on the end-effector is used, but tissue probing forces are estimated from measured cable tensions. A user study involving surgical trainees (n = 22) was conducted to experimentally evaluate the platform in two palpation-based test-cases on silicone phantoms. Two modalities were compared: visual feedback alone and both visual + haptic feedbacks available at the master site. RESULTS: Surgical trainees' preference for the modality providing both visual and haptic feedback is corroborated by both quantitative and qualitative metrics. Hard nodules detection sensitivity improves (94.35 ± 9.1% vs 76.09 ± 19.15% for visual feedback alone), while also exerting smaller forces (4.13 ± 1.02 N vs 4.82 ± 0.81 N for visual feedback alone) on the phantom tissues. At the same time, the subjective perceived workload decreases. CONCLUSION: Tissue-probe contact forces are estimated in a low cost and unique way, without the need of force sensors on the end-effector. Haptics demonstrated an improvement in the tumor detection rate, a reduction of the probing forces, and a decrease in the perceived workload for the trainees. SIGNIFICANCE: Relevant benefits are demonstrated from the usage of combined cable-driven parallel manipulators and haptics during robotic minimally invasive procedures. The translation of robotic intraoperative palpation to clinical practice could improve the detection and dissection of cancer nodules.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Retroalimentação , Procedimentos Cirúrgicos Minimamente Invasivos , Palpação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA