Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Cell ; 186(9): 1819-1821, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37116467

RESUMO

Metabolic changes are essential for neurodevelopmental processes. However, little is known about how and when neuronal metabolic remodeling occurs to promote functional circuits. In this issue of Cell, Knaus et al. demonstrate that a temporary perinatal shift in metabolites and lipids is crucial for cortical neurons' survival and wiring.


Assuntos
Neurônios , Sobrevivência Celular , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia
2.
Cell ; 155(1): 228-41, 2013 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-24074871

RESUMO

The powerful regulation of bone mass exerted by the brain suggests the existence of bone-derived signals modulating this regulation or other functions of the brain. We show here that the osteoblast-derived hormone osteocalcin crosses the blood-brain barrier, binds to neurons of the brainstem, midbrain, and hippocampus, enhances the synthesis of monoamine neurotransmitters, inhibits GABA synthesis, prevents anxiety and depression, and favors learning and memory independently of its metabolic functions. In addition to these postnatal functions, maternal osteocalcin crosses the placenta during pregnancy and prevents neuronal apoptosis before embryos synthesize this hormone. As a result, the severity of the neuroanatomical defects and learning and memory deficits of Osteocalcin(-/-) mice is determined by the maternal genotype, and delivering osteocalcin to pregnant Osteocalcin(-/-) mothers rescues these abnormalities in their Osteocalcin(-/-) progeny. This study reveals that the skeleton via osteocalcin influences cognition and contributes to the maternal influence on fetal brain development.


Assuntos
Encéfalo/crescimento & desenvolvimento , Osteocalcina/metabolismo , Transdução de Sinais , Envelhecimento , Animais , Encéfalo/embriologia , Encéfalo/fisiologia , Feminino , Feto/metabolismo , Camundongos , Neurotransmissores/metabolismo , Gravidez
3.
EMBO Rep ; 25(2): 593-615, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38228788

RESUMO

Many physiological osteocalcin-regulated functions are affected in adult offspring of mothers experiencing unhealthy pregnancy. Furthermore, osteocalcin signaling during gestation influences cognition and adrenal steroidogenesis in adult mice. Together these observations suggest that osteocalcin may broadly function during pregnancy to determine organismal homeostasis in adult mammals. To test this hypothesis, we analyzed in unchallenged wildtype and Osteocalcin-deficient, newborn and adult mice of various genotypes and origin maintained on different genetic backgrounds, the functions of osteocalcin in the pancreas, liver and testes and their molecular underpinnings. This analysis revealed that providing mothers are Osteocalcin-deficient, Osteocalcin haploinsufficiency in embryos hampers insulin secretion, liver gluconeogenesis, glucose homeostasis, testes steroidogenesis in adult offspring; inhibits cell proliferation in developing pancreatic islets and testes; and disrupts distinct programs of gene expression in these organs and in the brain. This study indicates that osteocalcin exerts dominant functions in most organs it influences. Furthermore, through their synergistic regulation of multiple physiological functions, osteocalcin of maternal and embryonic origins contributes to the establishment and maintenance of organismal homeostasis in newborn and adult offspring.


Assuntos
Glicemia , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Humanos , Camundongos , Gravidez , Glicemia/análise , Glicemia/metabolismo , Homeostase , Insulina/metabolismo , Secreção de Insulina , Mamíferos/metabolismo , Osteocalcina/genética , Osteocalcina/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo
4.
Cell ; 144(5): 796-809, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21333348

RESUMO

Interactions between bone and the reproductive system have until now been thought to be limited to the regulation of bone remodeling by the gonads. We now show that, in males, bone acts as a regulator of fertility. Using coculture assays, we demonstrate that osteoblasts are able to induce testosterone production by the testes, though they fail to influence estrogen production by the ovaries. Analyses of cell-specific loss- and gain-of-function models reveal that the osteoblast-derived hormone osteocalcin performs this endocrine function. By binding to a G protein-coupled receptor expressed in the Leydig cells of the testes, osteocalcin regulates in a CREB-dependent manner the expression of enzymes that is required for testosterone synthesis, promoting germ cell survival. This study expands the physiological repertoire of osteocalcin and provides the first evidence that the skeleton is an endocrine regulator of reproduction.


Assuntos
Osso e Ossos/fisiologia , Fertilidade , Osteocalcina/fisiologia , Animais , Células Cultivadas , Humanos , Células Intersticiais do Testículo/fisiologia , Masculino , Camundongos , Osteoblastos/fisiologia , Testículo/fisiologia
5.
PLoS Genet ; 18(1): e1010003, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35025875

RESUMO

The paternally expressed gene 3 (Pw1/Peg3) is a mammalian-specific parentally imprinted gene expressed in stem/progenitor cells of the brain and endocrine tissues. Here, we compared phenotypic characteristics in Pw1/Peg3 deficient male and female mice. Our findings indicate that Pw1/Peg3 is a key player for the determination of sexual dimorphism in metabolism and behavior. Mice carrying a paternally inherited Pw1/Peg3 mutant allele manifested postnatal deficits in GH/IGF dependent growth before weaning, sex steroid dependent masculinization during puberty, and insulin dependent fat accumulation in adulthood. As a result, Pw1/Peg3 deficient mice develop a sex-dependent global shift of body metabolism towards accelerated adiposity, diabetic-like insulin resistance, and fatty liver. Furthermore, Pw1/Peg3 deficient males displayed reduced social dominance and competitiveness concomitant with alterations in the vasopressinergic architecture in the brain. This study demonstrates that Pw1/Peg3 provides an epigenetic context that promotes male-specific characteristics through sex steroid pathways during postnatal development.


Assuntos
Fator de Crescimento Insulin-Like I/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Adiposidade , Animais , Tamanho Corporal , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Impressão Genômica , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Camundongos , Herança Paterna , Fenótipo , Caracteres Sexuais
6.
Mol Psychiatry ; 28(7): 3002-3012, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37131071

RESUMO

Chronic stress constitutes a major risk factor for depression that can disrupt various aspects of homeostasis, including the gut microbiome (GM). We have recently shown that GM imbalance affects adult hippocampal (HPC) neurogenesis and induces depression-like behaviors, with the exact mechanisms being under active investigation. Here we hypothesized that the vagus nerve (VN), a key bidirectional route of communication between the gut and the brain, could relay the effects of stress-induced GM changes on HPC plasticity and behavior. We used fecal samples derived from mice that sustained unpredictable chronic mild stress (UCMS) to inoculate healthy mice and assess standard behavioral readouts for anxiety- and depressive-like behavior, conduct histological and molecular analyses for adult HPC neurogenesis and evaluate neurotransmission pathways and neuroinflammation. To study the potential role of the VN in mediating the effects of GM changes on brain functions and behavior, we used mice that sustained subdiaphragmatic vagotomy (Vx) prior the GM transfer. We found that inoculation of healthy mice with GM from UCMS mice activates the VN and induces early and sustained changes in both serotonin and dopamine neurotransmission pathways in the brainstem and HPC. These changes are associated with prompt and persistent deficits in adult HPC neurogenesis and induce early and sustained neuroinflammatory responses in the HPC. Remarkably, Vx abrogates adult HPC neurogenesis deficits, neuroinflammation and depressive-like behavior, suggesting that vagal afferent pathways are necessary to drive GM-mediated effects on the brain.


Assuntos
Microbioma Gastrointestinal , Camundongos , Animais , Microbioma Gastrointestinal/fisiologia , Doenças Neuroinflamatórias , Encéfalo/metabolismo , Nervo Vago/fisiologia , Depressão/metabolismo , Estresse Psicológico
7.
Cell ; 138(5): 976-89, 2009 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-19737523

RESUMO

Leptin inhibition of bone mass accrual requires the integrity of specific hypothalamic neurons but not expression of its receptor on these neurons. The same is true for its regulation of appetite and energy expenditure. This suggests that leptin acts elsewhere in the brain to achieve these three functions. We show here that brainstem-derived serotonin (BDS) favors bone mass accrual following its binding to Htr2c receptors on ventromedial hypothalamic neurons and appetite via Htr1a and 2b receptors on arcuate neurons. Leptin inhibits these functions and increases energy expenditure because it reduces serotonin synthesis and firing of serotonergic neurons. Accordingly, while abrogating BDS synthesis corrects the bone, appetite and energy expenditure phenotypes caused by leptin deficiency, inactivation of the leptin receptor in serotonergic neurons recapitulates them fully. This study modifies the map of leptin signaling in the brain and identifies a molecular basis for the common regulation of bone and energy metabolisms. For a video summary of this article, see the PaperFlick file with the Supplemental Data available online.


Assuntos
Apetite , Densidade Óssea , Metabolismo Energético , Leptina/metabolismo , Serotonina/metabolismo , Tronco Encefálico/metabolismo , Hipotálamo/metabolismo , Receptores para Leptina/metabolismo , Transdução de Sinais
8.
Genes Dev ; 24(20): 2330-42, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20952540

RESUMO

Serotonin is a bioamine regulating bone mass accrual differently depending on its site of synthesis. It decreases accrual when synthesized in the gut, and increases it when synthesized in the brain. The signal transduction events elicited by gut-derived serotonin once it binds to the Htr1b receptor present on osteoblasts have been identified and culminate in cAMP response element-binding protein (CREB) regulation of osteoblast proliferation. In contrast, we do not know how brain-derived serotonin favors bone mass accrual following its binding to the Htr2c receptor on neurons of the hypothalamic ventromedial nucleus (VMH). We show here--through gene expression analysis, serotonin treatment of wild-type and Htr2c(-/-) hypothalamic explants, and cell-specific gene deletion in the mouse--that, following its binding to the Htr2c receptor on VMH neurons, serotonin uses a calmodulin kinase (CaMK)-dependent signaling cascade involving CaMKKß and CaMKIV to decrease the sympathetic tone and increase bone mass accrual. We further show that the transcriptional mediator of these events is CREB, whose phosphorylation on Ser 133 is increased by CaMKIV following serotonin treatment of hypothalamic explants. A microarray experiment identified two genes necessary for optimum sympathetic activity whose expression is regulated by CREB. These results provide a molecular understanding of how serotonin signals in hypothalamic neurons to regulate bone mass accrual and identify CREB as a critical determinant of this function, although through different mechanisms depending on the cell type, neuron, or osteoblast in which it is expressed.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Neurônios/metabolismo , Osteoblastos/metabolismo , Serotonina/metabolismo , Animais , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Encéfalo/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Linhagem Celular Tumoral , Análise por Conglomerados , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Feminino , Imunofluorescência , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Hipotálamo/citologia , Hipotálamo/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serotonina/farmacologia
9.
Annu Rev Physiol ; 74: 87-105, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22077214

RESUMO

Classical studies of vertebrate physiology have usually been confined to a given organ or cell type. The use of mouse genetics has changed this approach and has rejuvenated the concept of a whole-body study of physiology. One physiological system that has been profoundly influenced by mouse genetics is skeletal physiology. Indeed, genetic approaches have identified several unexpected organs that affect bone physiology. These new links have begun to provide a plausible explanation for the evolutionary involvement of hormones such as leptin with bone physiology. These genetic approaches have also revealed bone as a true endocrine organ capable of regulating energy metabolism and reproduction. Collectively, the body of work discussed below illustrates a new and unconventional role for bone in mammalian physiology.


Assuntos
Osso e Ossos/fisiologia , Sistema Endócrino/fisiologia , Adipócitos/fisiologia , Animais , Remodelação Óssea/fisiologia , Encéfalo/fisiologia , Metabolismo Energético/fisiologia , Feminino , Fertilidade/fisiologia , Trato Gastrointestinal/fisiologia , Hormônios/fisiologia , Humanos , Camundongos , Osteoblastos/fisiologia , Osteocalcina/fisiologia , Pâncreas/fisiologia , Gravidez
10.
Rev Endocr Metab Disord ; 16(2): 99-113, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25771889

RESUMO

In the past 15 years, the field of physiology has been radically challenged by landmark studies using novel tools of genetic engineering. Particular to our interest, the reciprocal interactions between the skeleton and the nervous system were shown to be major ones. The demonstration that brain, via multiple pathways, is a powerful regulator of bone growth, has shed light on an important central regulation of skeletal homeostasis. More recently, it was shown that bone might return the favor to the brain through the secretion of a bone-derived hormone, osteocalcin. The skeleton influences development and cognitive functions of the central nervous system at different stages throughout life suggesting an intimate dialogue between bone and brain.


Assuntos
Osso e Ossos/fisiologia , Encéfalo/fisiologia , Comunicação Celular/fisiologia , Animais , Densidade Óssea/genética , Osso e Ossos/metabolismo , Encéfalo/metabolismo , Homeostase/fisiologia , Humanos , Leptina/metabolismo , Leptina/fisiologia , Serotonina/metabolismo , Serotonina/fisiologia
11.
Arch Biochem Biophys ; 561: 147-53, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24998176

RESUMO

The demonstration that the skeleton is an endocrine organ has enriched the physiological importance of this tissue and advanced our understanding of whole-organism homeostasis. Moreover, that bone affects powerful regulators of its own physiology such as glucose metabolism, energy expenditure, gonads and brain, reinforced the concept of interdependence between organs. This notion is particularly true for the interplay between bone and gonads. On one hand, gonads are essential for bone growth, maturation and maintenance via the secretion of the sex steroid hormones. On the other hand, bone returns this favor to the gonads, through the secretion of osteocalcin (Ocn), which promotes testosterone biosynthesis following its binding to Gprc6a, a G-protein-coupled receptor. Moreover, that a loss of function mutation in GPRC6A leads to glucose intolerance and male sterility in human, expands the biological relevance of the endocrine role of the skeleton and suggests to some extent its implication in the onset of reproductive and metabolic human diseases.


Assuntos
Desenvolvimento Ósseo/fisiologia , Metabolismo Energético/fisiologia , Hormônios Esteroides Gonadais/metabolismo , Gônadas/metabolismo , Homeostase/fisiologia , Animais , Retroalimentação Fisiológica/fisiologia , Feminino , Humanos , Masculino
12.
Cell Death Dis ; 15(1): 20, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195526

RESUMO

In recent years, primary familial brain calcification (PFBC), a rare neurological disease characterized by a wide spectrum of cognitive disorders, has been associated to mutations in the sodium (Na)-Phosphate (Pi) co-transporter SLC20A2. However, the functional roles of the Na-Pi co-transporters in the brain remain still largely elusive. Here we show that Slc20a1 (PiT-1) and Slc20a2 (PiT-2) are the most abundant Na-Pi co-transporters expressed in the brain and are involved in the control of hippocampal-dependent learning and memory. We reveal that Slc20a1 and Slc20a2 are differentially distributed in the hippocampus and associated with independent gene clusters, suggesting that they influence cognition by different mechanisms. Accordingly, using a combination of molecular, electrophysiological and behavioral analyses, we show that while PiT-2 favors hippocampal neuronal branching and survival, PiT-1 promotes synaptic plasticity. The latter relies on a likely Otoferlin-dependent regulation of synaptic vesicle trafficking, which impacts the GABAergic system. These results provide the first demonstration that Na-Pi co-transporters play key albeit distinct roles in the hippocampus pertaining to the control of neuronal plasticity and cognition. These findings could provide the foundation for the development of novel effective therapies for PFBC and cognitive disorders.


Assuntos
Cognição , Simportadores , Transporte de Íons , Plasticidade Neuronal/genética , Fosfatos
13.
Autophagy ; 20(6): 1418-1441, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38261660

RESUMO

RAS is one of the most commonly mutated oncogenes associated with multiple cancer hallmarks. Notably, RAS activation induces intracellular reactive oxygen species (ROS) generation, which we previously demonstrated as a trigger for autophagy-associated execution of mutant KRAS-expressing cancer cells. Here we report that drug (merodantoin; C1)-induced activation of mutant KRAS promotes phospho-AKT S473-dependent ROS-mediated S616 phosphorylation and mitochondrial localization of DNM1L/DRP1 (dynamin 1 like) and cleavage of the fusion-associated protein OPA1 (OPA1 mitochondrial dynamin like GTPase). Interestingly, accumulation of the outer mitochondrial membrane protein VDAC1 (voltage dependent anion channel 1) is observed in mutant KRAS-expressing cells upon exposure to C1. Conversely, silencing VDAC1 abolishes C1-induced mitophagy, and gene knockdown of either KRAS, AKT or DNM1L rescues ROS-dependent VDAC1 accumulation and stability, thus suggesting an axis of mutant active KRAS-phospho-AKT S473-ROS-DNM1L-VDAC1 in mitochondrial morphology change and cancer cell execution. Importantly, we identified MTOR (mechanistic target of rapamycin kinsase) complex 2 (MTORC2) as the upstream mediator of AKT phosphorylation at S473 in our model. Pharmacological or genetic inhibition of MTORC2 abrogated C1-induced phosphorylation of AKT S473, ROS generation and mitophagy induction, as well as rescued tumor colony forming ability and migratory capacity. Finally, increase in thermal stability of KRAS, AKT and DNM1L were observed upon exposure to C1 only in mutant KRAS-expressing cells. Taken together, our work has unraveled a novel mechanism of selective targeting of mutant KRAS-expressing cancers via MTORC2-mediated AKT activation and ROS-dependent mitofission, which could have potential therapeutic implications given the relative lack of direct RAS-targeting strategies in cancer.Abbreviations: ACTB/ß-actin: actin beta; AKT: AKT serine/threonine kinase; C1/merodantoin: 1,3-dibutyl-2-thiooxo-imidazoldine-4,5-dione; CAT: catalase; CETSA: cellular thermal shift assay; CHX: cycloheximide; DKO: double knockout; DNM1L/DRP1: dynamin 1 like; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; H2O2: hydrogen peroxide; HSPA1A/HSP70-1: heat shock protein family A (Hsp70) member 1A; HSP90AA1/HSP90: heat shock protein 90 alpha family class A member 1; KRAS: KRAS proto-oncogene, GTPase; MAP1LC3B/LC3B, microtubule associated protein 1 light chain 3 beta; LC3B-I: unlipidated form of LC3B; LC3B-II: phosphatidylethanolamine-conjugated form of LC3B; MAPKAP1/SIN1: MAPK associated protein 1; MAPK1/ERK2: mitogen-activated protein kinase 1; MAPK3/ERK1: mitogen-activated protein kinase 3; MFI: mean fluorescence intensity; MiNA: Mitochondrial Network Analysis; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin kinase complex 1; MTORC2: mechanistic target of rapamycin kinase complex 2; O2.-: superoxide; OMA1: OMA1 zinc metallopeptidase; OPA1: OPA1 mitochondrial dynamin like GTPase; RICTOR: RPTOR independent companion of MTOR complex 2; ROS: reactive oxygen species; RPTOR/raptor: regulatory associated protein of MTOR complex 1; SOD1: superoxide dismutase 1; SOD2: superoxide dismutase 2; SQSTM1/p62: sequestosome 1; VDAC1: voltage dependent anion channel 1; VDAC2: voltage dependent anion channel 2.


Assuntos
Neoplasias Colorretais , Alvo Mecanístico do Complexo 2 de Rapamicina , Mitocôndrias , Mitofagia , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas p21(ras) , Espécies Reativas de Oxigênio , Humanos , Espécies Reativas de Oxigênio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Mitofagia/efeitos dos fármacos , Mitofagia/genética , Mitofagia/fisiologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Mutação/genética , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Fosforilação/efeitos dos fármacos
14.
Sci Transl Med ; 16(760): eadl0715, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39141698

RESUMO

Extracellular acyl-coenzyme A binding protein [ACBP encoded by diazepam binding inhibitor (DBI)] is a phylogenetically ancient appetite stimulator that is secreted in a nonconventional, autophagy-dependent fashion. Here, we show that low ACBP/DBI plasma concentrations are associated with poor prognosis in patients with anorexia nervosa, a frequent and often intractable eating disorder. In mice, anorexia induced by chronic restraint stress (CRS) is accompanied by a reduction in circulating ACBP/DBI concentrations. We engineered a chemical-genetic system for the secretion of ACBP/DBI through a biotin-activatable, autophagy-independent pathway. In transgenic mice expressing this system in hepatocytes, biotin-induced elevations in plasma ACBP/DBI concentrations prevented anorexia induced by CRS or chemotherapeutic agents including cisplatin, doxorubicin, and paclitaxel. ACBP/DBI reversed the CRS or cisplatin-induced increase in plasma lipocalin-2 concentrations and the hypothalamic activation of anorexigenic melanocortin 4 receptors, for which lipocalin-2 is an agonist. Daily intravenous injections of recombinant ACBP/DBI protein or subcutaneous implantation of osmotic pumps releasing recombinant ACBP/DBI mimicked the orexigenic effects of the chemical-genetic system. In conclusion, the supplementation of extracellular and peripheral ACBP/DBI might constitute a viable strategy for treating anorexia.


Assuntos
Anorexia , Inibidor da Ligação a Diazepam , Animais , Inibidor da Ligação a Diazepam/metabolismo , Anorexia/tratamento farmacológico , Anorexia/metabolismo , Humanos , Camundongos Transgênicos , Camundongos , Anorexia Nervosa/metabolismo , Anorexia Nervosa/tratamento farmacológico , Lipocalina-2/metabolismo , Lipocalina-2/sangue , Hipotálamo/metabolismo , Masculino , Feminino , Camundongos Endogâmicos C57BL , Restrição Física , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos
15.
Nat Commun ; 14(1): 1531, 2023 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-36934089

RESUMO

Cajal-Retzius cells (CRs) are transient neurons, disappearing almost completely in the postnatal neocortex by programmed cell death (PCD), with a percentage surviving up to adulthood in the hippocampus. Here, we evaluate CR's role in the establishment of adult neuronal and cognitive function using a mouse model preventing Bax-dependent PCD. CRs abnormal survival resulted in impairment of hippocampus-dependent memory, associated in vivo with attenuated theta oscillations and enhanced gamma activity in the dorsal CA1. At the cellular level, we observed transient changes in the number of NPY+ cells and altered CA1 pyramidal cell spine density. At the synaptic level, these changes translated into enhanced inhibitory currents in hippocampal pyramidal cells. Finally, adult mutants displayed an increased susceptibility to lethal tonic-clonic seizures in a kainate model of epilepsy. Our data reveal that aberrant survival of a small proportion of postnatal hippocampal CRs results in cognitive deficits and epilepsy-prone phenotypes in adulthood.


Assuntos
Hipocampo , Neurônios , Hipocampo/fisiologia , Transtornos da Memória/genética , Transtornos da Memória/metabolismo , Neurônios/metabolismo , Células Piramidais/fisiologia , Convulsões/genética , Convulsões/metabolismo , Animais , Camundongos
16.
bioRxiv ; 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37645714

RESUMO

Many physiological functions regulated by osteocalcin are affected in adult offspring of mothers experiencing an unhealthy pregnancy. Furthermore, osteocalcin signaling during gestation influences cognition and adrenal steroidogenesis in adult mice. Together these observations suggest that osteocalcin functions during pregnancy may be a broader determinant of organismal homeostasis in adult mammals than previously thought. To test this hypothesis, we analyzed in unchallenged wildtype and Osteocalcin -deficient, newborn, and adult mice of various genotypes and origin, and that were maintained on different genetic backgrounds, the functions of osteocalcin in the pancreas, liver and testes and their molecular underpinnings. This analysis revealed that providing mothers are themselves Osteocalcin -deficient, Osteocalcin haploinsufficiency in embryos hampers insulin secretion, liver gluconeogenesis, glucose homeostasis, testes steroidogenesis in adult offspring; inhibits cell proliferation in developing pancreatic islets and testes; and disrupts distinct programs of gene expression in these organs and in the brain. This study indicates that through their synergistic regulation of multiple physiological functions, osteocalcin ofmaternal and embryonic origins contributes to the establishment and maintenance of organismal homeostasis in newborn and adult offspring.

17.
Nat Aging ; 3(2): 213-228, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-37118117

RESUMO

Cognitive decline and mood disorders increase in frequency with age. Many efforts are focused on the identification of molecules and pathways to treat these conditions. Here, we demonstrate that systemic administration of growth differentiation factor 11 (GDF11) in aged mice improves memory and alleviates senescence and depression-like symptoms in a neurogenesis-independent manner. Mechanistically, GDF11 acts directly on hippocampal neurons to enhance neuronal activity via stimulation of autophagy. Transcriptomic and biochemical analyses of these neurons reveal that GDF11 reduces the activity of mammalian target of rapamycin (mTOR), a master regulator of autophagy. Using a murine model of corticosterone-induced depression-like phenotype, we also show that GDF11 attenuates the depressive-like behavior of young mice. Analysis of sera from young adults with major depressive disorder (MDD) reveals reduced GDF11 levels. These findings identify mechanistic pathways related to GDF11 action in the brain and uncover an unknown role for GDF11 as an antidepressant candidate and biomarker.


Assuntos
Depressão , Transtorno Depressivo Maior , Camundongos , Animais , Depressão/tratamento farmacológico , Transtorno Depressivo Maior/tratamento farmacológico , Fatores de Diferenciação de Crescimento/genética , Fenótipo , Autofagia/genética , Mamíferos/metabolismo , Proteínas Morfogenéticas Ósseas/genética
18.
Autophagy ; 18(6): 1297-1317, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34520334

RESUMO

Cerebral ischemia is a pathology involving a cascade of cellular mechanisms, leading to the deregulation of proteostasis, including macroautophagy/autophagy, and finally to neuronal death. If it is now accepted that cerebral ischemia induces autophagy, the effect of thrombolysis/energy recovery on proteostasis remains unknown. Here, we investigated the effect of thrombolysis by PLAT/tPA (plasminogen activator, tissue) on autophagy and neuronal death. In two in vitro models of hypoxia reperfusion and an in vivo model of thromboembolic stroke with thrombolysis by PLAT/tPA, we found that ischemia enhances neuronal deleterious autophagy. Interestingly, PLAT/tPA decreases autophagy to mediate neuroprotection by modulating the PI3K-AKT-MTOR pathways both in vitro and in vivo. We identified IGF1R (insulin-like growth factor I receptor; a tyrosine kinase receptor) as the effective receptor and showed in vitro, in vivo and in human stroke patients and that PLAT/tPA is able to degrade IGFBP3 (insulin-like growth factor binding protein 3) to increase IGF1 (insulin-like growth factor 1) bioavailability and thus IGF1R activation.Abbreviations: AKT/protein kinase B: thymoma viral proto-oncogene 1; EGFR: epidermal growth factor receptor; Hx: hypoxia; IGF1: insulin-like growth factor 1; IGF1R: insulin-like growth factor I receptor; IGFBP3: insulin-like growth factor binding protein 3; Ka: Kainate; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAPK/ERK: mitogen-activated protein kinase; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; OGD: oxygen and glucose deprivation; OGDreox: oxygen and glucose deprivation + reoxygentation; PepA: pepstatin A1; PI3K: phosphoinositide 3-kinase; PLAT/tPA: plasminogen activator, tissue; PPP: picropodophyllin; SCH77: SCH772984; ULK1: unc-51 like kinase 1; Wort: wortmannin.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Autofagia , Isquemia Encefálica/tratamento farmacológico , Glucose/farmacologia , Humanos , Hipóxia , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/farmacologia , Fator de Crescimento Insulin-Like I/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Oxigênio/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Acidente Vascular Cerebral/tratamento farmacológico , Serina-Treonina Quinases TOR/metabolismo , Terapia Trombolítica , Ativador de Plasminogênio Tecidual/metabolismo , Ativador de Plasminogênio Tecidual/farmacologia
19.
J Exp Med ; 219(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35254402

RESUMO

Crouzon syndrome with acanthosis nigricans (CAN, a rare type of craniosynostosis characterized by premature suture fusion and neurological impairments) has been linked to a gain-of-function mutation (p.Ala391Glu) in fibroblast growth factor receptor 3 (FGFR3). To characterize the CAN mutation's impact on the skull and on brain functions, we developed the first mouse model (Fgfr3A385E/+) of this syndrome. Surprisingly, Fgfr3A385E/+ mice did not exhibit craniosynostosis but did show severe memory impairments, a structurally abnormal hippocampus, low activity-dependent synaptic plasticity, and overactivation of MAPK/ERK and Akt signaling pathways in the hippocampus. Systemic or brain-specific pharmacological inhibition of FGFR3 overactivation by BGJ398 injections rescued the memory impairments observed in Fgfr3A385E/+ mice. The present study is the first to have demonstrated cognitive impairments associated with brain FGFR3 overactivation, independently of skull abnormalities. Our results provide a better understanding of FGFR3's functional role and the impact of its gain-of-function mutation on brain functions. The modulation of FGFR3 signaling might be of value for treating the neurological disorders associated with craniosynostosis.


Assuntos
Acantose Nigricans , Disostose Craniofacial , Craniossinostoses , Acantose Nigricans/complicações , Acantose Nigricans/genética , Animais , Encéfalo , Disostose Craniofacial/complicações , Disostose Craniofacial/genética , Craniossinostoses/genética , Modelos Animais de Doenças , Transtornos da Memória/genética , Camundongos , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética
20.
Sci Rep ; 12(1): 6132, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35413967

RESUMO

Mutations in the Cystic Fibrosis Transmembrane Conductance Regulator gene (CFTR) are responsible for Cystic Fibrosis (CF). The most common CF-causing mutation is the deletion of the 508th amino-acid of CFTR (F508del), leading to dysregulation of the epithelial fluid transport in the airway's epithelium and the production of a thickened mucus favoring chronic bacterial colonization, sustained inflammation and ultimately respiratory failure. c407 is a bis-phosphinic acid derivative which corrects CFTR dysfunction in epithelial cells carrying the F508del mutation. This study aimed to investigate c407 in vivo activity in the F508del Cftrtm1Eur murine model of CF. Using nasal potential difference measurement, we showed that in vivo administration of c407 by topical, short-term intraperitoneal and long-term subcutaneous route significantly increased the CFTR dependent chloride (Cl-) conductance in F508del Cftrtm1Eur mice. This functional improvement was correlated with a relocalization of F508del-cftr to the apical membrane in nasal epithelial cells. Importantly, c407 long-term administration was well tolerated and in vitro ADME toxicologic studies did not evidence any obvious issue. Our data provide the first in vivo preclinical evidence of c407 efficacy and absence of toxicity after systemic administration for the treatment of Cystic Fibrosis.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Animais , Cloretos , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Transporte de Íons , Camundongos , Mutação , Ácidos Fosfínicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA