Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Hum Genomics ; 18(1): 43, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659056

RESUMO

OBJECTIVE: Myasthenia gravis (MG) is a complex autoimmune disease affecting the neuromuscular junction with limited drug options, but the field of MG treatment recently benefits from novel biological agents. We performed a drug-targeted Mendelian randomization (MR) study to identify novel therapeutic targets of MG. METHODS: Cis-expression quantitative loci (cis-eQTL), which proxy expression levels for 2176 druggable genes, were used for MR analysis. Causal relationships between genes and disease, identified by eQTL MR analysis, were verified by comprehensive sensitivity, colocalization, and protein quantitative loci (pQTL) MR analyses. The protein-protein interaction (PPI) analysis was also performed to extend targets, followed by enzyme-linked immunosorbent assay (ELISA) to explore the serum level of drug targets in MG patients. A phenome-wide MR analysis was then performed to assess side effects with a clinical trial review assessing druggability. RESULTS: The eQTL MR analysis has identified eight potential targets for MG, one for early-onset MG and seven for late-onset MG. Further colocalization analyses indicated that CD226, CDC42BPB, PRSS36, and TNFSF12 possess evidence for colocalization with MG or late-onset MG. pQTL MR analyses identified the causal relations of TNFSF12 and CD226 with MG and late-onset MG. Furthermore, PPI analysis has revealed the protein interaction between TNFSF12-TNFSF13(APRIL) and TNFSF12-TNFSF13B(BLyS). Elevated TNFSF13 serum level of MG patients was also identified by ELISA experiments. This study has ultimately proposed three promising therapeutic targets (TNFSF12, TNFSF13, TNFSF13B) of MG. CONCLUSIONS: Three drug targets associated with the BLyS/APRIL pathway have been identified. Multiple biological agents, including telitacicept and belimumab, are promising for MG therapy.


Assuntos
Análise da Randomização Mendeliana , Miastenia Gravis , Locos de Características Quantitativas , Humanos , Miastenia Gravis/genética , Miastenia Gravis/tratamento farmacológico , Miastenia Gravis/patologia , Miastenia Gravis/sangue , Locos de Características Quantitativas/genética , Mapas de Interação de Proteínas/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único/genética
2.
Neurol Sci ; 45(4): 1699-1706, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37910321

RESUMO

BACKGROUND: The association between myasthenia gravis (MG) and other autoimmune diseases is well established. In this study, we aimed to investigate the causal effects between MG and five other autoimmune diseases, including autoimmune thyroid disease (AITD), multiple sclerosis (MS), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and type 1 diabetes (T1DM). METHODS: We conducted a bidirectional Mendelian randomization (MR) study by using seven published genome-wide association studies (GWAS), including MG (1873 patients versus 36,370 controls), AITD (autoimmune hypothyroidism) (22,997 patients versus 175,475 controls), AITD (autoimmune hyperthyroidism) (962 patients versus 172,976 controls), MS (47,429 patients versus 68,374 controls), RA (14,361 patients versus 43,923 controls), SLE (4222 patients versus 8431 controls), and T1DM (9266 patients versus 15,574 controls). We used the inverse-variance-weighted (IVW) method, weighted-median (WM) estimator, MR-Egger regression, and MR PRESSO in our analyses. We also carried out detailed sensitivity analyses for each direction using the aforementioned methods. RESULTS: When MG was treated as the exposure, MR evidence suggested a causal relationship between MG and T1DM, SLE, AITD (both hypothyroidism and hyperthyroidism), and MS (excluding RA). Using the IVW method, we found that MG was associated with increased risk of T1DM (OR = 1.94; 95% CI, 1.16-3.26; p = 0.012), SLE (OR = 1.47; 95% CI, 1.02-2.13; p = 0.04), AITD (hypothyroidism) (OR = 1.31; 95% CI, 1.02-1.68; p = 0.039), AITD (hyperthyroidism) (OR = 1.55; 95% CI, 1.15-2.09; p = 0.004), and MS (OR = 1.46; 95% CI, 1.01-2.09; p = 0.041). When MG was treated as the outcome, MR evidence suggested that RA, T1DM, and SLE were causal factors in MG. Using the IVW method, we found that the risk of MG increased with exposure to RA (OR = 1.21; 95% CI, 1.08-1.37; p = 0.002), T1DM (OR = 1.09; 95% CI, 1.02-1.16; p = 0.006), and SLE (OR = 1.12; 95% CI, 1.02-1.23; p = 0.018). CONCLUSIONS: This study demonstrated a causal relationship between MG and several other autoimmune diseases. Our results supported a bidirectional causal association between MG and SLE/T1DM. Our findings also provided reliable evidence that MG is associated with increased risk of AITD. Meanwhile, we also showed that RA is a possible causal driver of MG risk.


Assuntos
Diabetes Mellitus Tipo 1 , Hipertireoidismo , Hipotireoidismo , Lúpus Eritematoso Sistêmico , Esclerose Múltipla , Miastenia Gravis , Humanos , Estudo de Associação Genômica Ampla , Lúpus Eritematoso Sistêmico/epidemiologia , Lúpus Eritematoso Sistêmico/genética , Análise da Randomização Mendeliana , Esclerose Múltipla/epidemiologia , Esclerose Múltipla/genética , Miastenia Gravis/epidemiologia , Miastenia Gravis/genética
3.
Biochim Biophys Acta Rev Cancer ; 1878(3): 188891, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37001615

RESUMO

S100A8 and S100A9 are Ca2+ binding proteins that belong to the S100 family. Primarily expressed in neutrophils and monocytes, S100A8 and S100A9 play critical roles in modulating various inflammatory responses and inflammation-associated diseases. Forming a common heterodimer structure S100A8/A9, S100A8 and S100A9 are widely reported to participate in multiple signaling pathways in tumor cells. Meanwhile, S100A8/A9, S100A8, and S100A9, mainly as promoters, contribute to tumor development, growth and metastasis by interfering with tumor metabolism and the microenvironment. In recent years, the potential of S100A8/A9, S100A9, and S100A8 as tumor diagnostic or prognostic biomarkers has also been demonstrated. In addition, an increasing number of potential therapies targeting S100A8/A9 and related signaling pathways have emerged. In this review, we will first expound on the characteristics of S100A8/A9, S100A9, and S100A8 in-depth, focus on their interactions with tumor cells and microenvironments, and then discuss their clinical applications as biomarkers and therapeutic targets. We also highlight current limitations and look into the future of S100A8/A9 targeted anti-cancer therapy.


Assuntos
Calgranulina A , Neoplasias , Humanos , Calgranulina A/metabolismo , Calgranulina B/genética , Calgranulina B/metabolismo , Neoplasias/genética , Transdução de Sinais , Biomarcadores , Microambiente Tumoral
4.
Front Neurol ; 14: 1107904, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970538

RESUMO

Objective: Albeit the gene of PCDH19-FE was ascertained, the correlation of gene mutation, PCDH19 protein structure, and phenotype heterogeneity remained obscure. This study aimed to report a five-generation pedigree of seven female patients of PCDH19-FE and tried to explore whether two variants were correlated with PCDH19 protein structure and function alteration, and PCDH19-FE phenotype. Methods: We analyzed the clinical data and genetic variants of a PCDH19-FE pedigree, to explore the phenotype heterogeneity of PCDH19-FE and underlying mechanisms. In addition to the clinical information of family members, next-generation sequencing was adopted to detect the variant sites of probands with validation by sanger sequencing. And the sanger sequencing was conducted in other patients in this pedigree. The biological conservation analysis and population polymorphism analysis of variants were also performed subsequently. The structure alteration of mutated PCDH19 protein was predicted by AlphaFold2. Results: Based on a five-generation pedigree of PCDH19-FE, missense variants of c.695A>G and c.2760T>A in the PCDH19 gene were found in the heterozygous proband (V:1), which resulted in the change of amino acid 232 from Asn to Ser (p.Asn232Ser) and amino acid 920 from Asp to Glu (p.Asp920Glu) influencing PCDH19 function. The other six females in the pedigree (II:6, II:8, IV:3, IV:4, IV:5, IV:11) exhibited different clinical phenotypes but shared the same variant. Two males with the same variant have no clinical manifestations (III:3, III:10). The biological conservation analysis and population polymorphism analysis demonstrated the highly conservative characteristics of these two variants. AlphaFold2 predicted that the variant, p.Asp920Glu, led to the disappearance of the hydrogen bond between Asp at position 920 and His at position 919. Furthermore, the hydrogen bond between Asp920 and His919 also disappeared when the Asn amino acid mutated to Ser at position 232. Conclusion: A strong genotype-phenotype heterogeneity was observed among female patients with the same genotype in our PCDH19-FE pedigree. And two missense variants, c.695A > G and c.2760T>A in the PCDH19 gene, have been identified in our pedigree. The c.2760T>A variant was a novel variant site probably related to the PCDH19-FE.

5.
Talanta ; 252: 123857, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36058195

RESUMO

Aeromonas salmonicida (A. salmonicida) is an important opportunistic pathogen to aquatic animals that causes severe economic losses to aquaculture, which makes its rapid detection and prevention are critical. In this work, a single-stranded DNA (ssDNA) aptamer (A.s-2) with high specificity to the bacteria was selected by Systematic Evolution of Ligands by Exponential Enrichment (SELEX). The selected aptamer was confirmed with high binding ability and specificity (Kd = 32 ± 8 nM). Furthermore, a novel dual-model colorimetric and ratiometric fluorescent aptasensor was constructed based on the G-quadruplex-modified aptamer and g-C3N4 for sensitive, reliable, and visual detection of the diseased bacteria in fishes. The quantitative detection was achieved in the linear range of 103-107 CFU mL-1 with a detection limit of 1.9 × 102 CFU mL-1. Meanwhile, the semi-quantitative detection can also be performed visually through fluorescence or color changes of the solution, which is suitable for the early diagnosis of pathogen infection in grassroots farms. Moreover, the developed aptasensor was successfully applied to detect A. salmonicida infection in zebrafish samples with satisfactory results. This work provides a framework for the rapid detection of pathogens in aquaculture, indicating its great prospects in food safety.


Assuntos
Aeromonas salmonicida , Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Animais , Colorimetria/métodos , Peixe-Zebra , DNA de Cadeia Simples , Bactérias , Técnica de Seleção de Aptâmeros , Limite de Detecção
6.
Front Genet ; 13: 921256, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812736

RESUMO

Epigenetic regulation, particularly RNA n6 methyl adenosine (m6A) modification, plays an important role in the immune response. However, the regulatory role of m6A in the immune microenvironment in osteoarthritis (OA) remains unclear. Accordingly, we systematically studied RNA modification patterns mediated by 23 m6A regulators in 38 samples and discussed the characteristics of the immune microenvironment modified by m6A. Next, we constructed a novel OA m6A nomogram, an m6A-transcription factor-miRNA network, and a drug network. Healthy and OA samples showed distinct m6A regulatory factor expression patterns. YTHDF3 expression was upregulated in OA samples and positively correlated with type II helper cells and TGFb family member receptors. Furthermore, three different RNA modification patterns were mediated by 23 m6A regulatory factors; in Mode 3, the expression levels of YTHDF3, type II T helper cells, and TGFb family member receptors were upregulated. Pathways related to endoplasmic reticulum oxidative stress and mitochondrial autophagy showed a strong correlation with the regulatory factors associated with Mode 3 and 23 m6A regulatory factors. Through RT-qPCR we validated that SREBF2 and EGR1 as transcription factors of YTHDF3 and IGF2BP3 are closely associated with the development of OA, hsa-miR-340 as a miRNA for YTHDF3 and IGF2BP3 was involved in the development of OA, we also detected the protein expression levels of IGF2BP3, YTHDF3, EGR1 and SREBF2 by western blotting, and the results were consistent with PCR. Overall, the constructed nomogram can facilitate the prediction of OA risk.

7.
Front Pediatr ; 10: 785735, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463884

RESUMO

In China, a 9-year-old boy was transferred to the hospital with fever, vomiting, and headache. The disease rapidly deteriorated into vague consciousness. Applying conventional clinical examinations such as blood and cerebrospinal fluid (CSF) tests, the diagnosis of bacterial meningoencephalitis was first drawn, and expectant treatments were adopted immediately. However, the symptoms did not alleviate, adversely, this boy died 3 days after admission. Considering the skeptical points of the duration, such as the unknown infectious bacteria and the pathogen invasion path, blood and CSF samples were then sent for metagenomic next-generation sequencing (mNGS) to ascertain the cause of death. The 42,899 and 1,337 specific sequences of N. fowleri were detected by mNGS in the CSF sample and the blood sample, respectively. PCR results and pathological smear subsequently confirmed the mNGS detection. The patient was finally diagnosed as primary amoebic meningoencephalitis. Besides, in this article, 15 similar child infection cases in the past 10 years are summarized and analyzed to promote the early diagnosis of this rare disease.

8.
Talanta ; 239: 123144, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34923254

RESUMO

Base excision repair (BER) is vital for maintaining the integrity of the genome under oxidative damage. DNA glycosylase initiates the BER pathway recognizes and excises the mismatched substrate base leading to the apurinic/apyrimidinic site generation, and simultaneously breaks the single-strand DNA. As the aberrant activity of DNA glycosylase is associated with numerous diseases, including cancer, immunodeficiency, and atherosclerosis, the detection of DNA glycosylase is significant from bench to bedside. In this review, we summarized novel DNA strategies in the past five years for DNA glycosylase activity detection, which are classified into fluorescence, colorimetric, electrochemical strategies, etc. We also highlight the current limitations and look into the future of DNA glycosylase activity monitoring.


Assuntos
Técnicas Biossensoriais , DNA Glicosilases , Dano ao DNA , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo
9.
Front Mol Neurosci ; 15: 994270, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407759

RESUMO

Background: An increasing number of observational studies have revealed an association among the gut microbiota, gut metabolites, and epilepsy. However, this association is easily influenced by confounders such as diet, and the causality of this association remains obscure. Methods: Aiming to explore the causal relationship and ascertain specific gut microbe taxa for epilepsy, we conducted a bi-directional Mendelian randomization (MR) study based on the genome-wide association study (GWAS) data of epilepsy from the International League Against Epilepsy, with the gut microbiota GWAS results from MiBioGen, and summary-level GWAS data of gut microbiota-dependent metabolites trimethylamine N-oxide and its predecessors. Results: Nine phyla, 15 classes, 19 orders, 30 families, and 96 genera were analyzed. A suggestive association of host-genetic-driven increase in family Veillonellaceae with a higher risk of childhood absence epilepsy (odds ratio [OR]: 1.033, confidential interval [CI]: 1.015-1.051, P IVW = 0.0003), class Melainabacteria with a lower risk of generalized epilepsy with tonic-clonic seizures (OR = 0.986, CI = 0.979-0.994, P IVW = 0.0002), class Betaproteobacteria (OR = 0.958, CI = 0.937-0.979, P IVW = 0.0001), and order Burkholderiales (OR = 0.960, CI = 0.937-0.984, P IVW = 0.0010) with a lower risk of juvenile myoclonic epilepsy were identified after multiple-testing correction. Our sensitivity analysis revealed no evidence of pleiotropy, reverse causality, weak instrument bias, or heterogeneity. Conclusion: This is the first MR analysis to explore the potential causal relationship among the gut microbiota, metabolites, and epilepsy. Four gut microbiota features (two class levels, one order level, and one family level) were identified as potential interventional targets for patients with childhood absence epilepsy, generalized epilepsy with tonic-clonic seizures, and juvenile myoclonic epilepsy. Previous associations in numerous observational studies may had been interfered by confounders. More rigorous studies were needed to ascertain the relationship among the gut microbiota, metabolites, and epilepsy.

10.
Front Neurol ; 13: 989280, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36203993

RESUMO

Objective: It is widely acknowledged that central nervous system (CNS) infection is a serious infectious disease accompanied by various complications. However, the accuracy of current detection methods is limited, leading to delayed diagnosis and treatment. In recent years, metagenomic next-generation sequencing (mNGS) has been increasingly adopted to improve the diagnostic yield. The present study sought to evaluate the value of mNGS in CNS infection diagnosis. Methods: Following the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) 2022 guidelines, we searched relevant articles published in seven databases, including PubMed, Web of Science, and Cochrane Library, published from January 2014 to January 2022. High-quality articles related to mNGS applications in the CNS infection diagnosis were included. The comparison between mNGS and the gold standard of CNS infection, such as culture, PCR or serology, and microscopy, was conducted to obtain true positive (TP), true negative (TN), false positive (FP), and false negative (FN) values, which were extracted for sensitivity and specificity calculation. Results: A total of 272 related studies were retrieved and strictly selected according to the inclusion and exclusion criteria. Finally, 12 studies were included for meta-analysis and the pooled sensitivity was 77% (95% CI: 70-82%, I 2 = 39.69%) and specificity was 96% (95% CI: 93-98%, I 2 = 72.07%). Although no significant heterogeneity in sensitivity was observed, a sub-group analysis was conducted based on the pathogen, region, age, and sample pretreatment method to ascertain potential confounders. The area under the curve (AUC) of the summary receiver operating characteristic curve (SROC) of mNGS for CNS infection was 0.91 (95% CI: 0.88-0.93). Besides, Deek's Funnel Plot Asymmetry Test indicated no publication bias in the included studies (Figure 3, p > 0.05). Conclusion: Overall, mNGS exhibits good sensitivity and specificity for diagnosing CNS infection and diagnostic performance during clinical application by assisting in identifying the pathogen. However, the efficacy remains inconsistent, warranting subsequent studies for further performance improvement during its clinical application. Study registration number: INPLASY202120002.

11.
Nanomicro Lett ; 13(1): 133, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34138374

RESUMO

Fluorescence lifetime imaging microscopy (FLIM) has been rapidly developed over the past 30 years and widely applied in biomedical engineering. Recent progress in fluorophore-dyed probe design has widened the application prospects of fluorescence. Because fluorescence lifetime is sensitive to microenvironments and molecule alterations, FLIM is promising for the detection of pathological conditions. Current cancer-related FLIM applications can be divided into three main categories: (i) FLIM with autofluorescence molecules in or out of a cell, especially with reduced form of nicotinamide adenine dinucleotide, and flavin adenine dinucleotide for cellular metabolism research; (ii) FLIM with Förster resonance energy transfer for monitoring protein interactions; and (iii) FLIM with fluorophore-dyed probes for specific aberration detection. Advancements in nanomaterial production and efficient calculation systems, as well as novel cancer biomarker discoveries, have promoted FLIM optimization, offering more opportunities for medical research and applications to cancer diagnosis and treatment monitoring. This review summarizes cutting-edge researches from 2015 to 2020 on cancer-related FLIM applications and the potential of FLIM for future cancer diagnosis methods and anti-cancer therapy development. We also highlight current challenges and provide perspectives for further investigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA