Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Appl Biochem ; 68(6): 1386-1395, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33140493

RESUMO

Acute myocardial infarction (AMI) is one of the leading causes of death worldwide. Cardiac troponin I (cTn1) is a commonly used biomarker for the diagnosis of AMI. Although there are various detection methods for the rapid detection of cTn1 such as optical, electrochemical, and acoustic techniques, electrochemical aptasensing techniques are commonly used because of their ease of handling, portability, and compactness. In this study, an electrochemical cTn1 biosensor, MoS2 nanoflowers on screen-printed electrodes assisted by aptamer, was synthesized using hydrothermal technique. Field emission scanning electron microscopy revealed distinct 2D nanosheets and jagged flower-like 3D MoS2 nanoflower structure, with X-ray diffraction analysis revealing well-stacked MoS2  layers. Voltammetry aptasensing of cTn1 ranges from 10 fM to 1 nM, with a detection limit at 10 fM and a sensitivity of 0.10 nA µM-1  cm-2 . This is a ∼fivefold improvement in selectivity compared with the other proteins and human serum. This novel aptasensor retained 90% of its biosensing activity after 6 weeks with a 4.3% RSD and is a promising high-performance biosensor for detecting cTn1.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais , Dissulfetos/química , Técnicas Eletroquímicas , Molibdênio/química , Infarto do Miocárdio/diagnóstico , Troponina I/análise , Doença Aguda , Biomarcadores/análise , Eletrodos , Humanos
2.
Int J Biol Macromol ; 253(Pt 2): 126620, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37683754

RESUMO

Troponin I is a protein released into the human blood circulation and a commonly used biomarker due to its sensitivity and specificity in diagnosing myocardial injury. When heart injury occurs, elevated troponin Troponin I levels are released into the bloodstream. The biomarker is a strong and reliable indicator of myocardial injury in a person, with immediate treatment required. For electrochemical sensing of Troponin I, a quadruplet 3D laser-scribed graphene/molybdenum disulphide functionalised N2-doped graphene quantum dots hybrid with lignin-based Ag-nanoparticles (3D LSG/MoS2/N-GQDs/L-Ag NPs) was fabricated using a hydrothermal process as an enhanced quadruplet substrate. Hybrid MoS2 nanoflower (H3 NF) and nanosphere (H3 NS) were formed independently by varying MoS2 precursors and were grown on 3D LSG uniformly without severe stacking and restacking issues, and characterized by morphological, physical, and structural analyses with the N-GQDs and Ag NPs evenly distributed on 3D LSG/MoS2 surface by covalent bonding. The selective capture of and specific interaction with Troponin I by the biotinylated aptamer probe on the bio-electrode, resulted in an increment in the charge transfer resistance. The limit of detection, based on impedance spectroscopy, is 100 aM for both H3 NF and H3 NS hybrids, with the H3 NF hybrid biosensor having better analytical performance in terms of linearity, selectivity, repeatability, and stability.


Assuntos
Técnicas Biossensoriais , Grafite , Nanopartículas , Pontos Quânticos , Humanos , Pontos Quânticos/química , Grafite/química , Molibdênio/química , Lignina , Troponina I , Técnicas Biossensoriais/métodos , Biomarcadores , Técnicas Eletroquímicas/métodos
3.
Materials (Basel) ; 15(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35329710

RESUMO

Conventional pipeline corrosion assessment methods produce conservative failure pressure predictions for pipes under the influence of both internal pressure and longitudinal compressive stress. Numerical approaches, on the other hand, are computationally expensive. This work provides an assessment method (empirical) for the failure pressure prediction of a high toughness corroded pipe subjected to combined loading, which is currently unavailable in the industry. Additionally, a correlation between the corrosion defect geometry, as well as longitudinal compressive stress and the failure pressure of a pipe based on the developed method, is established. An artificial neural network (ANN) trained with failure pressure from FEA of an API 5L X80 pipe for varied defect spacings, depths, defect lengths, and longitudinal compressive loads were used to develop the equation. With a coefficient of determination (R2) of 0.99, the proposed model was proven to be capable of producing accurate predictions when tested against arbitrary finite element models. The effects of defect spacing, length, and depth, and longitudinal compressive stress on the failure pressure of a corroded pipe with circumferentially interacting defects, were then investigated using the suggested model in a parametric analysis.

4.
Crit Rev Anal Chem ; : 1-24, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36288094

RESUMO

Biopolymers are an attractive green alternative to conventional polymers, owing to their excellent biocompatibility and biodegradability. However, their amorphous and nonconductive nature limits their potential as active biosensor material/substrate. To enhance their bio-analytical performance, biopolymers are combined with conductive materials to improve their physical and chemical characteristics. We review the main advances in the field of electrochemical biosensors, specifically the structure, approach, and application of biopolymers, as well as their conjugation with conductive nanoparticles, polymers and metal oxides in green-based noninvasive analytical biosensors. In addition, we reviewed signal measurement, substrate bio-functionality, biochemical reaction, sensitivity, and limit of detection (LOD) of different biopolymers on various transducers. To date, pectin biopolymer, when conjugated with either gold nanoparticles, polypyrrole, reduced graphene oxide, or multiwall carbon nanotubes forming nanocomposites on glass carbon electrode transducer, tends to give the best LOD, highest sensitivity and can detect multiple analytes/targets. This review will spur new possibilities for the use of biosensors for medical diagnostic tests.

5.
Sci Rep ; 11(1): 20825, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675227

RESUMO

The bovine milk allergenic protein, 'ß-lactoglobulin' is one of the leading causes of milk allergic reaction. In this research, a novel label-free non-faradaic capacitive aptasensor was designed to detect ß-lactoglobulin using a Laser Scribed Graphene (LSG) electrode. The graphene was directly engraved into a microgapped (~ 95 µm) capacitor-electrode pattern on a flexible polyimide (PI) film via a simple one-step CO2 laser irradiation. The novel hybrid nanoflower (NF) was synthesized using 1,1'-carbonyldiimidazole (CDI) as the organic molecule and copper (Cu) as the inorganic molecule via one-pot biomineralization by tuning the reaction time and concentration. NF was fixed on the pre-modified PI film at the triangular junction of the LSG microgap specifically for bio-capturing ß-lactoglobulin. The fine-tuned CDI-Cu NF revealed the flower-like structures was viewed through field emission scanning electron microscopy. Fourier-transform infrared spectroscopy showed the interactions with PI film, CDI-Cu NF, oligoaptamer and ß-lactoglobulin. The non-faradaic sensing of milk allergen ß-lactoglobulin corresponds to a higher loading of oligoaptamer on 3D-structured CDI-Cu NF, with a linear range detection from 1 ag/ml to 100 fg/ml and attomolar (1 ag/ml) detection limit (S/N = 3:1). This novel CDI-Cu NF/LSG microgap aptasensor has a great potential for the detection of milk allergen with high-specificity and sensitivity.


Assuntos
Alérgenos/análise , Aptâmeros de Nucleotídeos/química , Cobre/química , Imidazóis/química , Leite/química , Animais , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Análise de Alimentos/métodos , Grafite/química , Lactoglobulinas/análise , Limite de Detecção , Nanoestruturas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA