Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Transl Anim Sci ; 3(3): 929-944, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32704857

RESUMO

The California Net Energy System (CNES) can reliably project performance of feedlot cattle based on three factors: expected dry matter intake (DMI), some index of degree of maturity of cattle linked to body composition (fat and protein content), and an estimate of the net energy (NE) content of the diet. The CNES allowed feedlot managers to monitor growth and efficiency of individual pens of cattle. Through assigning distinct values for net energy for maintenance (NEm) vs. net energy for gain (NEg) of the metabolizable energy (ME) present in feeds, the CNES enables valid economic comparisons among feedstuffs, an appraisal not feasible based on total digestible nutrients or digestible energy (DE) values. Because NEm and NEg are linked mathematically to ME, the CNES also allows performance-adjusted ME (paME) value of diets to be calculated from observed DMI and growth or carcass measurements. Compared with other productivity measures (e.g., average daily gain and gain-to-feed ratio) that are confounded with and affected by DMI, the CNES logically separates production responses by cattle into two factors-DMI and ME of the diet. This enables research scientists or cattle producers to appraise responses within these two factors independently. In feeding studies, means of paME values were related closely to ME values of diets calculated from the ME of diet ingredients. But unlike ME values projected from diet analyses, paME estimates are affected by environmental conditions (e.g., season, weather, animal interactions, stress, nutritional history and deficiencies, associative effects of feeds, imprecise feed management, and animal healthfulness and disorders). These factors typically overestimate ME intake or increase energy requirements, both of which decrease energetic efficiency. By comparing paME with ME values calculated from diet composition, logical reasons behind performance responses to and quantitative benefits from feed additives, grain processing, hormone implants, and animal management can be appraised. Considering the evolution in cattle types, management and marketing conditions, and changes in diet ingredients and processing that have occurred during the past 50 yr, updating by a skilled committee to correct certain anomalies within the CNES as currently being applied seems appropriate. Developing simplified spreadsheets could help users evaluate their own dietary and management conditions and assure that the CNES continues to be widely applied by the feedlot industry within the United States and worldwide.

2.
J Anim Sci ; 97(1): 456-471, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30351389

RESUMO

Two experiments were conducted to evaluate the performance responses of finishing feedlot cattle to dietary addition of essential oils and exogenous enzymes. The treatments in each experiment consisted of (DM basis): MON-sodium monensin (26 mg/kg); BEO-a blend of essential oils (90 mg/kg); BEO+MON-a blend of essential oils plus monensin (90 mg/kg + 26 mg/kg, respectively); BEO+AM-a blend of essential oils plus exogenous α-amylase (90 mg/kg + 560 mg/kg, respectively); and BEO+AM+PRO-a blend of essential oils plus exogenous α-amylase and exogenous protease (90 mg/kg + 560 mg/kg + 840 mg/kg, respectively). Exp. 1 consisted of a 93-d finishing period using 300 Nellore bulls in a randomized complete block design. Animals fed BEO had higher DMI (P < 0.001) but similar feed efficiency to animals fed MON (P ≥ 0.98). Compared with MON, the combination of BEO+AM resulted in 810 g greater DMI (P = 0.001), 190 g greater average daily gain (P = 0.04), 18 kg heavier final body weight (P = 0.04), and 12 kg heavier hot carcass weight (P = 0.02), although feed efficiency was not significantly different between BEO+AM and MON (P = 0.89). Combining BEO+MON tended to decrease hot carcass weight compared with BEO alone (P = 0.08) but not compared with MON (P = 0.98). Treatments did not impact observed dietary net energy values (P ≥ 0.74) or the observed:expected net energy ratio (P ≥ 0.11). In Exp. 2, five ruminally cannulated Nellore steers were used to evaluate intake, apparent total tract digestibility of nutrients, and ruminal parameters in a 5 × 5 Latin square design. Feeding BEO increased the total tract digestibility of CP compared to MON (P = 0.03). Compared to MON, feeding the combination of BEO+MON increased the intake of CP (P = 0.04) and NDF (P = 0.05), with no effects on total tract digestibility of nutrients (P ≥ 0.56), except for a tendency (P = 0.09) to increase CP digestibility. Intakes of all nutrients measured, except for ether extract (P = 0.16) were greater in animals fed BEO+AM when compared with MON (P ≤ 0.03), with no differences on total tract nutrient digestibilities (P ≥ 0.11) between these two treatments. In summary, diets containing the BEO used herein enhanced DMI of growing-finishing feedlot cattle compared with a basal diet containing MON without impair feed efficiency. A synergism between BEO and AM was detected, further increasing cattle performance and carcass production compared to MON.


Assuntos
Ração Animal/análise , Bovinos , Dieta/veterinária , Óleos Voláteis/farmacologia , alfa-Amilases/farmacologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Digestão/fisiologia , Masculino , Monensin/administração & dosagem , Óleos Voláteis/administração & dosagem , Distribuição Aleatória , alfa-Amilases/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA