Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 86(23): 12923-32, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22993159

RESUMO

The E2 envelope glycoprotein of hepatitis C virus (HCV) binds to the host entry factor CD81 and is the principal target for neutralizing antibodies (NAbs). Most NAbs recognize hypervariable region 1 on E2, which undergoes frequent mutation, thereby allowing the virus to evade neutralization. Consequently, there is great interest in NAbs that target conserved epitopes. One such NAb is AP33, a mouse monoclonal antibody that recognizes a conserved, linear epitope on E2 and potently neutralizes a broad range of HCV genotypes. In this study, the X-ray structure of AP33 Fab in complex with an epitope peptide spanning residues 412 to 423 of HCV E2 was determined to 1.8 Å. In the complex, the peptide adopts a ß-hairpin conformation and docks into a deep binding pocket on the antibody. The major determinants of antibody recognition are E2 residues L413, N415, G418, and W420. The structure is compared to the recently described HCV1 Fab in complex with the same epitope. Interestingly, the antigen-binding sites of HCV1 and AP33 are completely different, whereas the peptide conformation is very similar in the two structures. Mutagenesis of the peptide-binding residues on AP33 confirmed that these residues are also critical for AP33 recognition of whole E2, confirming that the peptide-bound structure truly represents AP33 interaction with the intact glycoprotein. The slightly conformation-sensitive character of the AP33-E2 interaction was explored by cross-competition analysis and alanine-scanning mutagenesis. The structural details of this neutralizing epitope provide a starting point for the design of an immunogen capable of eliciting AP33-like antibodies.


Assuntos
Anticorpos Neutralizantes/imunologia , Hepatite C/prevenção & controle , Modelos Moleculares , Tetraspanina 28/imunologia , Proteínas do Envelope Viral/imunologia , Vacinas contra Hepatite Viral/imunologia , Proteínas Virais/imunologia , Animais , Anticorpos Neutralizantes/química , Cristalografia por Raios X , Epitopos/genética , Camundongos , Mutagênese , Tetraspanina 28/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas Virais/metabolismo
2.
J Gen Virol ; 92(Pt 10): 2249-2261, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21697343

RESUMO

Despite extensive research, many details about the structure and functions of hepatitis C virus (HCV) glycoproteins E1 and E2 are not fully understood, and their crystal structure remains to be determined. We applied linker-scanning mutagenesis to generate a panel of 34 mutants, each containing an insertion of 5 aa at a random position within the E1E2 sequence. The mutated glycoproteins were analysed by using a range of assays to identify regions critical for maintaining protein conformation, E1E2 complex assembly, CD81 receptor binding, membrane fusion and infectivity. The results, while supporting previously published data, provide several interesting new findings. Firstly, insertion at amino acid 587 or 596 reduced E1E2 heterodimerization without affecting reactivity with some conformation-sensitive mAbs or with CD81, thus implicating these residues in glycoprotein assembly. Secondly, insertions within a conserved region of E2, between amino acid residues 611 and 631, severely disrupted protein conformation and abrogated binding of all conformation-sensitive antibodies, suggesting that the structural integrity of this region is critical for the correct folding of E2. Thirdly, an insertion at Leu-682 specifically affected membrane fusion, providing direct evidence that the membrane-proximal 'stem' of E2 is involved in the fusion mechanism. Overall, our results show that the HCV glycoproteins generally do not tolerate insertions and that there are a very limited number of sites that can be changed without dramatic loss of function. Nevertheless, we identified two E2 insertion mutants, at amino acid residues 408 and 577, that were infectious in the murine leukemia virus-based HCV pseudoparticle system.


Assuntos
Mutagênese Insercional/genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Antígenos CD/metabolismo , Linhagem Celular , Humanos , Fusão de Membrana , Modelos Moleculares , Mutagênese Insercional/métodos , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Receptores Virais/metabolismo , Tetraspanina 28 , Proteínas do Envelope Viral/química
3.
J Virol ; 84(11): 5494-507, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20237087

RESUMO

Cell culture-adaptive mutations within the hepatitis C virus (HCV) E2 glycoprotein have been widely reported. We identify here a single mutation (N415D) in E2 that arose during long-term passaging of HCV strain JFH1-infected cells. This mutation was located within E2 residues 412 to 423, a highly conserved region that is recognized by several broadly neutralizing antibodies, including the mouse monoclonal antibody (MAb) AP33. Introduction of N415D into the wild-type (WT) JFH1 genome increased the affinity of E2 to the CD81 receptor and made the virus less sensitive to neutralization by an antiserum to another essential entry factor, SR-BI. Unlike JFH1(WT), the JFH1(N415D) was not neutralized by AP33. In contrast, it was highly sensitive to neutralization by patient-derived antibodies, suggesting an increased availability of other neutralizing epitopes on the virus particle. We included in this analysis viruses carrying four other single mutations located within this conserved E2 region: T416A, N417S, and I422L were cell culture-adaptive mutations reported previously, while G418D was generated here by growing JFH1(WT) under MAb AP33 selective pressure. MAb AP33 neutralized JFH1(T416A) and JFH1(I422L) more efficiently than the WT virus, while neutralization of JFH1(N417S) and JFH1(G418D) was abrogated. The properties of all of these viruses in terms of receptor reactivity and neutralization by human antibodies were similar to JFH1(N415D), highlighting the importance of the E2 412-423 region in virus entry.


Assuntos
Anticorpos Neutralizantes/imunologia , Hepacivirus/imunologia , Mutação , Receptores Virais/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/fisiologia , Sequência Conservada/genética , Humanos , Internalização do Vírus
4.
NPJ Vaccines ; 6(1): 7, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420102

RESUMO

HCV vaccine development is stymied by the high genetic diversity of the virus and the variability of the envelope glycoproteins. One strategy to overcome this is to identify conserved, functionally important regions-such as the epitopes of broadly neutralizing antibodies (bNAbs)-and use these as a basis for structure-based vaccine design. Here, we report an anti-idiotype approach that has generated an antibody that mimics a highly conserved neutralizing epitope on HCV E2. Crucially, a mutagenesis screen was used to identify the antibody, designated B2.1 A, whose binding characteristics to the bNAb AP33 closely resemble those of the original antigen. Protein crystallography confirmed that B2.1 A is a structural mimic of the AP33 epitope. When used as an immunogen B2.1 A induced antibodies that recognized the same epitope and E2 residues as AP33 and most importantly protected against HCV challenge in a mouse model.

5.
J Gen Virol ; 91(Pt 1): 122-32, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19793905

RESUMO

The cellular DEAD-box protein DDX3 was recently shown to be essential for hepatitis C virus (HCV) replication. Prior to that, we had reported that HCV core binds to DDX3 in yeast-two hybrid and transient transfection assays. Here, we confirm by co-immunoprecipitation that this interaction occurs in cells replicating the JFH1 virus. Consistent with this result, immunofluorescence staining of infected cells revealed a dramatic redistribution of cytoplasmic DDX3 by core protein to the virus assembly sites around lipid droplets. Given this close association of DDX3 with core and lipid droplets, and its involvement in virus replication, we investigated the importance of this host factor in the virus life cycle. Mutagenesis studies located a single amino acid in the N-terminal domain of JFH1 core that when changed to alanine significantly abrogated this interaction. Surprisingly, this mutation did not alter infectious virus production and RNA replication, indicating that the core-DDX3 interaction is dispensable in the HCV life cycle. Consistent with previous studies, siRNA-led knockdown of DDX3 lowered virus production and RNA replication levels of both WT JFH1 and the mutant virus unable to bind DDX3. Thus, our study shows for the first time that the requirement of DDX3 for HCV replication is unrelated to its interaction with the viral core protein.


Assuntos
RNA Helicases DEAD-box/metabolismo , Hepacivirus/fisiologia , Interações Hospedeiro-Patógeno , Proteínas do Core Viral/metabolismo , Replicação Viral , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Linhagem Celular , RNA Helicases DEAD-box/antagonistas & inibidores , Técnicas de Silenciamento de Genes , Humanos , Imunoprecipitação , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Mapeamento de Interação de Proteínas , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
6.
Hepatology ; 48(6): 1779-90, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18828153

RESUMO

UNLABELLED: The hepatitis C virus (HCV) p7 protein plays a critical role during particle formation in cell culture and is required for virus replication in chimpanzees. The discovery that it displayed cation channel activity in vitro led to its classification within the "viroporin" family of virus-coded ion channel proteins, which includes the influenza A virus (IAV) M2 protein. Like M2, p7 was proposed as a potential target for much needed new HCV therapies, and this was supported by our finding that the M2 inhibitor, amantadine, blocked its activity in vitro. Since then, further compounds have been shown to inhibit p7 function but the relationship between inhibitory effects in vitro and efficacy against infectious virus is controversial. Here, we have sought to validate multiple p7 inhibitor compounds using a parallel approach combining the HCV infectious culture system and a rapid throughput in vitro assay for p7 function. We identify a genotype-dependent and subtype-dependent sensitivity of HCV to p7 inhibitors, in which results in cell culture largely mirror the sensitivity of recombinant protein in vitro; thus building separate sensitivity profiles for different p7 sequences. Inhibition of virus entry also occurred, suggesting that p7 may be a virion component. Second site effects on both cellular and viral processes were identified for several compounds in addition to their efficacy against p7 in vitro. Nevertheless, for some compounds antiviral effects were specific to a block of ion channel function. CONCLUSION: These data validate p7 inhibitors as prototype therapies for chronic HCV disease. (HEPATOLOGY 2008;48:1779-1790.).


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/genética , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/genética , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/farmacologia , 1-Desoxinojirimicina/uso terapêutico , Amantadina/farmacologia , Amantadina/uso terapêutico , Sequência de Aminoácidos , Antivirais/uso terapêutico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Genótipo , Hepatite C/tratamento farmacológico , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Dados de Sequência Molecular , Rimantadina/farmacologia , Rimantadina/uso terapêutico , Proteínas Virais/análise , Replicação Viral/efeitos dos fármacos
7.
Methods Mol Biol ; 379: 177-97, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17502679

RESUMO

Hepatitis C virus (HCV) infection is a major cause of severe chronic liver disease including cirrhosis and hepatocellular carcinoma. HCV has been classified into six major genotypes that exhibit extensive genetic variability, particularly in the envelope glycoproteins E1 and E2. Knowledge of genotypic and quasispecies variation on viral glycoprotein properties is important in understanding the structure-function relationship of the proteins. Through their perceived role as components of the virion and mediators of virus attachment and entry, HCV glycoproteins are primary targets for the development of antiviral agents. In this chapter, we describe methods optimized to extract E1E2-encoding sequences of all the major genotypes from HCV-infected patient sera, and their amplification, cloning, expression, and biochemical characterization. Furthermore, we describe a method to generate retroviral nucleocapsid pseudotyped with HCV E1E2 of diverse genotypes (HCVpp) whereby infectivity of the retroviral particle is conferred by HCV glycoproteins. Finally, we show how the HCVpp can be used in an infection assay to determine the viral glycoprotein function at the level of the host-pathogen interface and subsequent events leading to virus infection.


Assuntos
Glicoproteínas/biossíntese , Glicoproteínas/genética , Hepacivirus/genética , Proteínas do Envelope Viral/biossíntese , Proteínas do Envelope Viral/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular , Clonagem Molecular , Expressão Gênica , Variação Genética , Genótipo , Glicoproteínas/análise , Hepacivirus/metabolismo , Hepatite C Crônica , Humanos , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Proteínas do Envelope Viral/análise , Ligação Viral
8.
PLoS Negl Trop Dis ; 10(10): e0005048, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27706161

RESUMO

BACKGROUND: The outbreak of Zika virus (ZIKV) in the Americas has transformed a previously obscure mosquito-transmitted arbovirus of the Flaviviridae family into a major public health concern. Little is currently known about the evolution and biology of ZIKV and the factors that contribute to the associated pathogenesis. Determining genomic sequences of clinical viral isolates and characterization of elements within these are an important prerequisite to advance our understanding of viral replicative processes and virus-host interactions. METHODOLOGY/PRINCIPAL FINDINGS: We obtained a ZIKV isolate from a patient who presented with classical ZIKV-associated symptoms, and used high throughput sequencing and other molecular biology approaches to determine its full genome sequence, including non-coding regions. Genome regions were characterized and compared to the sequences of other isolates where available. Furthermore, we identified a subgenomic flavivirus RNA (sfRNA) in ZIKV-infected cells that has antagonist activity against RIG-I induced type I interferon induction, with a lesser effect on MDA-5 mediated action. CONCLUSIONS/SIGNIFICANCE: The full-length genome sequence including non-coding regions of a South American ZIKV isolate from a patient with classical symptoms will support efforts to develop genetic tools for this virus. Detection of sfRNA that counteracts interferon responses is likely to be important for further understanding of pathogenesis and virus-host interactions.


Assuntos
Genoma Viral , Interferon Tipo I/antagonistas & inibidores , RNA Viral/genética , Infecção por Zika virus/virologia , Zika virus/isolamento & purificação , Células A549 , Animais , Brasil/epidemiologia , Proteína DEAD-box 58/metabolismo , Surtos de Doenças , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno , Humanos , Interferon Tipo I/biossíntese , Interferon Tipo I/genética , Filogenia , RNA Viral/isolamento & purificação , Células Vero , Replicação Viral , Zika virus/genética , Zika virus/patogenicidade , Zika virus/fisiologia
9.
Protein Cell ; 1(7): 664-74, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21203938

RESUMO

Mannan-binding lectin (MBL) is a soluble innate immune protein that binds to glycosylated targets. MBL acts as an opsonin and activates complement, contributing to the destruction and clearance of infecting microorganisms. Hepatitis C virus (HCV) encodes two envelope glycoproteins E1 and E2, expressed as non-covalent E1/E2 heterodimers in the viral envelope. E1 and E2 are potential ligands for MBL. Here we describe an analysis of the interaction between HCV and MBL using recombinant soluble E2 ectodomain fragment, the full-length E1/E2 heterodimer, expressed in vitro, and assess the effect of this interaction on virus entry. A binding assay using antibody capture of full length E1/E2 heterodimers was used to demonstrate calcium dependent, saturating binding of MBL to HCV glycoproteins. Competition with various saccharides further confirmed that the interaction was via the lectin domain of MBL. MBL binds to E1/E2 representing a broad range of virus genotypes. MBL was shown to neutralize the entry into Huh-7 cells of HCV pseudoparticles (HCVpp) bearing E1/E2 from a wide range of genotypes. HCVpp were neutralized to varying degrees. MBL was also shown to neutralize an authentic cell culture infectious virus, strain JFH-1 (HCVcc). Furthermore, binding of MBL to E1/E2 was able to activate the complement system via MBL-associated serine protease 2. In conclusion, MBL interacts directly with HCV glycoproteins, which are present on the surface of the virion, resulting in neutralization of HCV particles.


Assuntos
Hepacivirus/fisiologia , Lectina de Ligação a Manose/metabolismo , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , Proteínas do Envelope Viral/metabolismo , Ligação Competitiva , Glicosilação , Hepacivirus/genética , Hepacivirus/patogenicidade , Humanos , Monossacarídeos/metabolismo , Ligação Proteica , Multimerização Proteica , Células Tumorais Cultivadas , Vírion/patogenicidade , Vírion/fisiologia , Internalização do Vírus
10.
J Gen Virol ; 90(Pt 1): 48-58, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19088272

RESUMO

Hepatitis C virus (HCV) infects cells by the direct uptake of cell-free virus following virus engagement with specific cell receptors such as CD81. Recent data have shown that HCV is also capable of direct cell-to-cell transmission, although the role of CD81 in this process is disputed. Here, we generated cell culture infectious strain JFH1 HCV (HCVcc) genomes carrying an alanine substitution of E2 residues W529 or D535 that are critical for binding to CD81 and infectivity. Co-cultivation of these cells with naïve cells expressing enhanced green fluorescent protein (EGFP) resulted in a small number of cells co-expressing both EGFP and HCV NS5A, showing that the HCVcc mutants are capable of cell-to-cell spread. In contrast, no cell-to-cell transmission from JFH1(DeltaE1E2)-transfected cells occurred, indicating that the HCV glycoproteins are essential for this process. The frequency of cell-to-cell transmission of JFH1(W529A) was unaffected by the presence of neutralizing antibodies that inhibit E2-CD81 interactions. By using cell lines that expressed little or no CD81 and that were refractive to infection with cell-free virus, we showed that the occurrence of viral cell-to-cell transmission is not influenced by the levels of CD81 on either donor or recipient cells. Thus, our results show that CD81 plays no role in the cell-to-cell spread of HCVcc and that this mode of transmission is shielded from neutralizing antibodies. These data suggest that therapeutic interventions targeting the entry of cell-free HCV may not be sufficient in controlling an ongoing chronic infection, but need to be complemented by additional strategies aimed at disrupting direct cell-to-cell viral transmission.


Assuntos
Antígenos CD/fisiologia , Hepacivirus/fisiologia , Hepatócitos/virologia , Receptores Virais/fisiologia , Substituição de Aminoácidos/genética , Anticorpos Antivirais/imunologia , Linhagem Celular Tumoral , Hepacivirus/genética , Humanos , Mutagênese Sítio-Dirigida , Testes de Neutralização , Tetraspanina 28 , Proteínas do Envelope Viral/genética , Replicação Viral
11.
J Gen Virol ; 89(Pt 3): 653-659, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18272755

RESUMO

The humoral response to hepatitis C virus (HCV) may contribute to controlling infection. We previously isolated human monoclonal antibodies to conformational epitopes on the HCV E2 glycoprotein. Here, we report on their ability to inhibit infection by retroviral pseudoparticles incorporating a panel of full-length E1E2 clones representing the full spectrum of genotypes 1-6. We identified one antibody, CBH-5, that was capable of neutralizing every genotype tested. It also potently inhibited chimeric cell culture-infectious HCV, which had genotype 2b envelope proteins in a genotype 2a (JFH-1) background. Analysis using a panel of alanine-substitution mutants of HCV E2 revealed that the epitope of CBH-5 includes amino acid residues that are required for binding of E2 to CD81, a cellular receptor essential for virus entry. This suggests that CBH-5 inhibits HCV infection by competing directly with CD81 for a binding site on E2.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Anti-Hepatite C/imunologia , Proteínas do Envelope Viral/imunologia , Antígenos CD , Linhagem Celular , Epitopos/química , Epitopos/imunologia , Genótipo , Hepacivirus/classificação , Hepacivirus/genética , Hepacivirus/imunologia , Hepacivirus/patogenicidade , Humanos , Testes de Neutralização , Retroviridae/genética , Retroviridae/imunologia , Tetraspanina 28 , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Vírion/genética , Vírion/imunologia , Vírion/metabolismo
12.
J Virol ; 81(2): 1043-7, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17079294

RESUMO

Development of full-length hepatitis C virus (HCV) RNAs replicating efficiently and producing infectious cell-cultured virions, HCVcc, in hepatoma cells provides an opportunity to characterize immunogenic domains on viral envelope proteins involved in entry into target cells. A panel of immunoglobulin G1 human monoclonal antibodies (HMAbs) to three immunogenic conformational domains (designated A, B, and C) on HCV E2 glycoprotein showed that epitopes within two domains, B and C, mediated HCVcc neutralization, whereas HMAbs to domain A were all nonneutralizing. For the neutralizing antibodies to domain B (with some to conserved epitopes among different HCV genotypes), the inhibitory antibody concentration reducing HCVcc infection by 90%, IC90, ranged from 0.1 to 4 microg/ml. For some neutralizing HMAbs, HCVcc neutralization displayed a linear correlation with an antibody concentration between the IC50 and the IC90 while others showed a nonlinear correlation. The differences between IC50/IC90 ratios and earlier findings that neutralizing HMAbs block E2 interaction with CD81 suggest that these antibodies block different facets of virus-receptor interaction. Collectively, these findings support an immunogenic model of HCV E2 having three immunogenic domains with distinct structures and functions and provide added support for the idea that CD81 is required for virus entry.


Assuntos
Antígenos CD/metabolismo , Hepacivirus/patogenicidade , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/metabolismo , Vírion/patogenicidade , Linhagem Celular Tumoral , Hepacivirus/genética , Hepacivirus/imunologia , Hepacivirus/metabolismo , Anticorpos Anti-Hepatite C/imunologia , Humanos , Testes de Neutralização , Tetraspanina 28 , Proteínas do Envelope Viral/química , Vírion/imunologia , Vírion/metabolismo
13.
J Gen Virol ; 88(Pt 11): 2991-3001, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17947521

RESUMO

Hepatitis C virus (HCV) is a major cause of liver disease worldwide and there is a pressing need for the development of a preventative vaccine as well as new treatments. It was recently demonstrated that the mouse monoclonal antibody (mAb) AP33 potently neutralizes infectivity of HCV pseudoparticles (HCVpp) carrying E1E2 envelopes representative of all of the major genotypes of HCV. This study determined the prevalence of human serum antibodies reactive to the region of HCV E2 recognized by AP33. Antibodies recognizing this region were present in less than 2.5 % of sera obtained from individuals with chronic HCV infection. A similar prevalence was found in a smaller cohort of individuals who had experienced an acute infection, suggesting that AP33-like antibodies do not play a major role in natural clearance of HCV infection. Sera exhibited different patterns of reactivity to a panel of peptides representing circulating variants, highlighting the presence of distinct epitopes in this region. Only two sera contained antibodies that could recognize a specific AP33-reactive peptide mimotope. AP33-like antibodies made a measurable contribution to the ability of these sera to inhibit E2-CD81 interaction, but not to the overall neutralization of cell entry. Together, these data show that antibodies to the AP33 epitope are not commonly generated during natural infection and that generation of such antibodies via vaccination may require modified immunogens to focus the generation of specific antibodies. Importantly, individuals harbouring AP33-like antibodies are an important potential source of human mAbs for future therapeutic development.


Assuntos
Epitopos/imunologia , Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/sangue , Hepatite C/imunologia , Proteínas do Envelope Viral/imunologia , Formação de Anticorpos , Antígenos CD/imunologia , Antígenos CD/metabolismo , Humanos , Ligação Proteica , Tetraspanina 28 , Proteínas do Envelope Viral/metabolismo
14.
J Virol ; 80(17): 8695-704, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16912317

RESUMO

Hepatitis C virus (HCV) cell entry involves interaction between the viral envelope glycoprotein E2 and the cell surface receptor CD81. Knowledge of conserved E2 determinants important for successful binding will facilitate development of entry inhibitors designed to block this interaction. Previous studies have assigned the CD81 binding function to a number of discontinuous regions of E2. To better define specific residues involved in receptor binding, a panel of mutants of HCV envelope proteins was generated, where conserved residues within putative CD81 binding regions were sequentially mutated to alanine. Mutant proteins were tested for binding to a panel of monoclonal antibodies and CD81 and for their ability to form noncovalent heterodimers and confer infectivity in the retroviral pseudoparticle (HCVpp) assay. Detection by conformation-sensitive monoclonal antibodies indicated that the mutant proteins were correctly folded. Mutant proteins fell into three groups: those that bound CD81 and conferred HCVpp infectivity, those that abrogated both CD81 binding and HCVpp infectivity, and a final group containing mutants that were able to bind CD81 but were noninfectious in the HCVpp assay. Specific amino acids conserved across all genotypes that were critical for CD81 binding were W420, Y527, W529, G530, and D535. These data significantly increase our understanding of the CD81 receptor-E2 binding process.


Assuntos
Antígenos CD/metabolismo , Hepacivirus/patogenicidade , Receptores Virais/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Sequência Conservada , Hepacivirus/genética , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Tetraspanina 28 , Proteínas do Envelope Viral/genética
15.
Hepatology ; 43(3): 592-601, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16496330

RESUMO

The mouse monoclonal antibody (MAb) AP33, recognizing a 12 amino acid linear epitope in the hepatitis C virus (HCV) E2 glycoprotein, potently neutralizes retroviral pseudoparticles (HCVpp) carrying genetically diverse HCV envelope glycoproteins. Consequently, this antibody and its epitope are highly relevant to vaccine design and immunotherapeutic development. The rational design of immunogens capable of inducing antibodies that target the AP33 epitope will benefit from a better understanding of this region. We have used complementary approaches, which include random peptide phage display mapping and alanine scanning mutagenesis, to identify residues in the HCV E2 protein critical for MAb AP33 binding. Four residues crucial for MAb binding were identified, which are highly conserved in HCV E2 sequences. Three residues within E2 were shown to be critical for binding to the rat MAb 3/11, which previously was shown to recognize the same 12 amino acid E2 epitope as MAb AP33 antibody, although only two of these were shared with MAb AP33. MAb AP33 bound to a panel of functional E2 proteins representative of genotypes 1-6 with higher affinity than MAb 3/11. Similarly, MAb AP33 was consistently more efficient at neutralizing infectivity by diverse HCVpp than MAb 3/11. Importantly, MAb AP33 was also able to neutralize the cell culture infectious HCV clone JFH-1. In conclusion, these data identify important protective determinants and will greatly assist the development of vaccine candidates based on the AP33 epitope.


Assuntos
Anticorpos Monoclonais/imunologia , Epitopos/imunologia , Hepacivirus/imunologia , Proteínas do Envelope Viral/imunologia , Sequência de Aminoácidos , Afinidade de Anticorpos , Linhagem Celular , Hepatite C/virologia , Anticorpos Anti-Hepatite C/imunologia , Antígenos da Hepatite C/química , Antígenos da Hepatite C/imunologia , Humanos , Testes de Neutralização , Biblioteca de Peptídeos , Conformação Proteica , Proteínas do Envelope Viral/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA