Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Curr Microbiol ; 73(5): 646-651, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27469106

RESUMO

cis-6-Hexadecenoic acid, a major component of human sebaceous lipids, is involved in the defense mechanism against Staphylococcus aureus infection in healthy skin and closely related to atopic dermatitis. Previously, Koike et al. (Biosci Biotechnol Biochem 64:1064-1066, 2000) reported that a mutant strain of Rhodococcus sp. produced cis-6-hexadecenoate derivatives from palmitate alkyl esters. From the mutant Rhodococcus strain, we identified and sequenced two open reading frames present in an amplified 5.7-kb region; these open reading frames encoded tandemly repeated Δ6-desaturase-like genes, Rdes1 and Rdes2. A phylogenetic tree indicated that Rdes1 and Rdes2 were different from previously known Δ6-desaturase genes, and that they formed a new cluster. Rdes1 and Rdes2 were each introduced into vectors and then expressed separately in Escherichia coli, and the fatty acid composition of the transformed cells was analyzed by gas chromatography and mass spectrometry. The amount of cis-6-hexadecenoic acid was significantly higher in Rdes1- or Rdes2-transformed E. coli cells (twofold and threefold, respectively) than in vector-only control cells. These results showed that cis-6-hexadecenoic acid was produced in E. coli cells by the rhodococcal Δ6-desaturase-like proteins.


Assuntos
Proteínas de Bactérias/genética , Linoleoil-CoA Desaturase/genética , Ácidos Palmíticos/metabolismo , Rhodococcus/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Humanos , Linoleoil-CoA Desaturase/química , Linoleoil-CoA Desaturase/metabolismo , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Rhodococcus/classificação , Rhodococcus/genética , Rhodococcus/metabolismo , Alinhamento de Sequência
2.
Biosci Biotechnol Biochem ; 79(3): 505-11, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25402593

RESUMO

Dipicolinic acid (DPA) is a multi-functional agent for cosmetics, antimicrobial products, detergents, and functional polymers. The aim of this study was to design a new method for producing DPA from renewable material. The Bacillus subtilis spoVF operon encodes enzymes for DPA synthase and the part of lysine biosynthetic pathway. However, DPA is only synthesized in the sporulation phase, so the productivity of DPA is low level. Here, we report that DPA synthase was expressed in vegetative cells, and DPA was produced in the culture medium by replacement of the spoVFA promoter with other highly expressed promoter in B. subtilis vegetative cells, such as spoVG promoter. DPA levels were increased in the culture medium of genetically modified strains. DPA productivity was significantly improved up to 29.14 g/L in 72 h culture by improving the medium composition using a two-step optimization technique with the Taguchi methodology.


Assuntos
Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Meios de Cultura/química , Engenharia Genética , Óperon/genética , Oxirredutases/genética , Ácidos Picolínicos/metabolismo , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , DNA Recombinante/genética , Oxirredutases/metabolismo
3.
Biosci Biotechnol Biochem ; 79(12): 2073-80, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26120821

RESUMO

Bacterial bio-production during the stationary phase is expected to lead to a high target yield because the cells do not consume the substrate for growth. Bacillus subtilis is widely used for bio-production, but little is known about the metabolism during the stationary phase. In this study, we focused on the dipicolinic acid (DPA) production by B. subtilis and investigated the metabolism. We found that DPA production competes with acetoin synthesis and that acetoin synthesis genes (alsSD) deletion increases DPA productivity by 1.4-fold. The mutant showed interesting features where the glucose uptake was inhibited, whereas the cell density increased by approximately 50%, resulting in similar volumetric glucose consumption to that of the parental strain. The metabolic profiles revealed accumulation of pyruvate, acetyl-CoA, and the TCA cycle intermediates in the alsSD mutant. Our results indicate that alsSD-deleted B. subtilis has potential as an effective host for stationary-phase production of compounds synthesized from these intermediates.


Assuntos
Acetoína/metabolismo , Bacillus subtilis/metabolismo , Biotecnologia , Ácidos Picolínicos/metabolismo , Bacillus subtilis/citologia , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Técnicas de Cultura , Glucose/metabolismo , Espaço Intracelular/metabolismo
4.
Biochim Biophys Acta ; 1834(3): 634-41, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23298542

RESUMO

We improved the enzymatic properties of the oxidatively stable alkaline serine protease KP-43 through protein engineering to make it more suitable for use in laundry detergents. To enhance proteolytic activity, the gene encoding KP-43 was mutagenized by error-prone PCR. Screening identified a Tyr195Cys mutant enzyme that exhibited increased specific activity toward casein between pH 7 and 11. At pH 10, the mutant displayed 1.3-fold higher specific activity for casein compared to the wild-type enzyme, but the activity of the mutant was essentially unchanged toward several synthetic peptides. Furthermore, the Tyr195Cys mutation significantly increased thermal stability and surfactant stability of the enzyme under oxidizing conditions. Examination of the crystal structure of KP-43 revealed that Tyr195 is a solvent exposed residue that forms part of a flexible loop that binds a Ca(2+) ion. This residue lies 15-20Å away from the residues comprising the catalytic triad of the enzyme. These results suggest that the substitution at position 195 does not alter the structure of the active center, but instead may affect a substrate-enzyme interaction. We propose that the Tyr195Cys mutation enhances the interaction with Ca(2+) and affects the packing of the Ca(2+) binding loop, consequently increasing protein stability. The simultaneously increased proteolytic activity, thermal stability, and surfactant stability of the Tyr195Cys mutant enzyme make the protein an ideal candidate for laundry detergent application.


Assuntos
Substituição de Aminoácidos , Proteínas de Bactérias/genética , Mutação , Serina Endopeptidases/genética , Álcalis/química , Sequência de Aminoácidos , Bacillus/enzimologia , Bacillus/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Cálcio/química , Cálcio/metabolismo , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Estabilidade Enzimática/genética , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteólise , Homologia de Sequência de Aminoácidos , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Tensoativos/química , Temperatura , Tirosina/genética , Tirosina/metabolismo
5.
J Biol Chem ; 287(13): 9765-9776, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22277649

RESUMO

Cell wall metabolism and cell wall modification are very important processes that bacteria use to adjust to various environmental conditions. One of the main modifications is deacetylation of peptidoglycan. The polysaccharide deacetylase homologue, Bacillus subtilis YjeA (renamed PdaC), was characterized and found to be a unique deacetylase. The pdaC deletion mutant was sensitive to lysozyme treatment, indicating that PdaC acts as a deacetylase. The purified recombinant and truncated PdaC from Escherichia coli deacetylated B. subtilis peptidoglycan and its polymer, (-GlcNAc-MurNAc[-L-Ala-D-Glu]-)(n). Surprisingly, RP-HPLC and ESI-MS/MS analyses showed that the enzyme deacetylates N-acetylmuramic acid (MurNAc) not GlcNAc from the polymer. Contrary to Streptococcus pneumoniae PgdA, which shows high amino acid sequence similarity with PdaC and is a zinc-dependent GlcNAc deacetylase toward peptidoglycan, there was less dependence on zinc ion for deacetylation of peptidoglycan by PdaC than other metal ions (Mn(2+), Mg(2+), Ca(2+)). The kinetic values of the activity toward B. subtilis peptidoglycan were K(m) = 4.8 mM and k(cat) = 0.32 s(-1). PdaC also deacetylated N-acetylglucosamine (GlcNAc) oligomers with a K(m) = 12.3 mM and k(cat) = 0.24 s(-1) toward GlcNAc(4). Therefore, PdaC has GlcNAc deacetylase activity toward GlcNAc oligomers and MurNAc deacetylase activity toward B. subtilis peptidoglycan.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Esterases/química , Peptidoglicano/química , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Esterases/genética , Esterases/metabolismo , Deleção de Genes , Cinética , Peptidoglicano/genética , Peptidoglicano/metabolismo , Homologia de Sequência de Aminoácidos , Streptococcus pneumoniae/enzimologia , Streptococcus pneumoniae/genética
6.
Microb Cell Fact ; 12: 18, 2013 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-23419162

RESUMO

BACKGROUND: The Bacillus subtilis genome-reduced strain MGB874 exhibits enhanced production of exogenous extracellular enzymes under batch fermentation conditions. We predicted that deletion of the gene for RocG, a bi-functional protein that acts as a glutamate dehydrogenase and an indirect repressor of glutamate synthesis, would improve glutamate metabolism, leading to further increased enzyme production. However, deletion of rocG dramatically decreased production of the alkaline cellulase Egl-237 in strain MGB874 (strain 874∆rocG). RESULTS: Transcriptome analysis and cultivation profiles suggest that this phenomenon is attributable to impaired secretion of alkaline cellulase Egl-237 and nitrogen starvation, caused by decreased external pH and ammonium depletion, respectively. With NH3-pH auxostat fermentation, production of alkaline cellulase Egl-237 in strain 874∆rocG was increased, exceeding that in the wild-type-background strain 168∆rocG. Notably, in strain 874∆rocG, high enzyme productivity was observed throughout cultivation, possibly due to enhancement of metabolic flux from 2-oxoglutarate to glutamate and generation of metabolic energy through activation of the tricarboxylic acid (TCA) cycle. The level of alkaline cellulase Egl-237 obtained corresponded to about 5.5 g l-1, the highest level reported so far. CONCLUSIONS: We found the highest levels of production of alkaline cellulase Egl-237 with the reduced-genome strain 874∆rocG and using the NH3-pH auxostat. Deletion of the glutamate dehydrogenase gene rocG enhanced enzyme production via a prolonged auxostat fermentation, possibly due to improved glutamate synthesis and enhanced generation of metabolism energy.


Assuntos
Bacillus subtilis/metabolismo , Celulases/metabolismo , Ácido Glutâmico/metabolismo , Amônia/metabolismo , Bacillus subtilis/crescimento & desenvolvimento , Celulases/genética , Ciclo do Ácido Cítrico , Regulação para Baixo , Perfilação da Expressão Gênica , Glutamato Desidrogenase/genética , Glutamato Desidrogenase/metabolismo , Concentração de Íons de Hidrogênio , Ácidos Cetoglutáricos/metabolismo , Deleção de Sequência
7.
Microb Cell Fact ; 11: 74, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22681752

RESUMO

BACKGROUND: Bacillus subtilis genome-reduced strain MGB874 exhibits enhanced production of exogenous extracellular alkaline cellulase Egl-237 and subtilisin-like alkaline protease M-protease. Here, we investigated the suitability of strain MGB874 for the production of α-amylase, which was anticipated to provoke secretion stress responses involving the CssRS (Control secretion stress Regulator and Sensor) system. RESULTS: Compared to wild-type strain 168, the production of a novel alkaline α-amylase, AmyK38, was severely decreased in strain MGB874 and higher secretion stress responses were also induced. Genetic analyses revealed that these phenomena were attributable to the decreased pH of growth medium as a result of the lowered expression of rocG, encoding glutamate dehydrogenase, whose activity leads to NH3 production. Notably, in both the genome-reduced and wild-type strains, an up-shift of the external pH by the addition of an alkaline solution improved AmyK38 production, which was associated with alleviation of the secretion stress response. These results suggest that the optimal external pH for the secretion of AmyK38 is higher than the typical external pH of growth medium used to culture B. subtilis. Under controlled pH conditions, the highest production level (1.08 g l(-1)) of AmyK38 was obtained using strain MGB874. CONCLUSIONS: We demonstrated for the first time that RocG is an important factor for secretory enzyme production in B. subtilis through its role in preventing acidification of the growth medium. As expected, a higher external pH enabled a more efficient secretion of the alkaline α-amylase AmyK38 in B. subtilis. Under controlled pH conditions, the reduced-genome strain MGB874 was demonstrated to be a beneficial host for the production of AmyK38.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Espaço Extracelular/metabolismo , alfa-Amilases/metabolismo , Bacillus subtilis/química , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Espaço Extracelular/química , Espaço Extracelular/genética , Regulação Bacteriana da Expressão Gênica , Concentração de Íons de Hidrogênio , alfa-Amilases/genética
8.
Appl Environ Microbiol ; 77(23): 8370-81, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21965396

RESUMO

Genome reduction strategies to create genetically improved cellular biosynthesis machineries for proteins and other products have been pursued by use of a wide range of bacteria. We reported previously that the novel Bacillus subtilis strain MGB874, which was derived from strain 168 and has a total genomic deletion of 874 kb (20.7%), exhibits enhanced production of recombinant enzymes. However, it was not clear how the genomic reduction resulted in elevated enzyme production. Here we report that deletion of the rocDEF-rocR region, which is involved in arginine degradation, contributes to enhanced enzyme production in strain MGB874. Deletion of the rocDEF-rocR region caused drastic changes in glutamate metabolism, leading to improved cell yields with maintenance of enzyme productivity. Notably, the specific enzyme productivity was higher in the reduced-genome strain, with or without the rocDEF-rocR region, than in wild-type strain 168. The high specific productivity in strain MGB874 is likely attributable to the higher expression levels of the target gene resulting from an increased promoter activity and plasmid copy number. Thus, the combined effects of the improved cell yield by deletion of the rocDEF-rocR region and the increased specific productivity by deletion of another gene(s) or the genomic reduction itself enhanced the production of recombinant enzymes in MGB874. Our findings represent a good starting point for the further improvement of B. subtilis reduced-genome strains as cell factories for the production of heterologous enzymes.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Enzimas/biossíntese , Enzimas/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Dosagem de Genes , Genoma Bacteriano , Ácido Glutâmico/metabolismo , Plasmídeos , Regiões Promotoras Genéticas , Deleção de Sequência
9.
Appl Microbiol Biotechnol ; 89(5): 1509-17, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21052990

RESUMO

The Gram-positive bacterium, Bacillus subtilis and related species are widely used industrially as hosts for producing enzymes. These species possess a high potential to produce secreted proteins into the culture medium. Nevertheless, the secretion of heterologous proteins by these species is frequently inefficient. In this study, the human interferon-α2b (hIFN-α2b) was used as a heterologous model protein, to investigate the effect of B. subtilis AmyE propeptide in enhancing the secretion of heterologous proteins in B. subtilis. We found that the secretion production and activity of hIFN-α2b with AmyE propeptide increased by more than threefold, compared to that without AmyE propeptide. The maximum amount of secreted hIFN-α2b with propeptide was 14.8 ± 0.6 µg ml⁻¹. In addition, the pro-hIFN-α2b bioactivity reached 5.4 ± 0.5 x 107 U mg⁻¹, which is roughly the same level as that of the non-propeptide hIFN-α2b. These results indicated that AmyE propeptide enhanced the secretion of the hIFN-α2b protein from B. subtilis. This study provides a useful method to enhance the extracellular production of heterologous proteins in B. subtilis.


Assuntos
Amilases/metabolismo , Bacillus subtilis/enzimologia , Bacillus subtilis/metabolismo , Interferon-alfa/metabolismo , Precursores de Proteínas/metabolismo , Humanos , Proteínas Recombinantes/metabolismo
10.
Biosci Biotechnol Biochem ; 75(6): 1119-28, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21670523

RESUMO

Two small genes named sscA (previously yhzE) and orf-62, located in the prsA-yhaK intergenic region of the Bacillus subtilis genome, were transcribed by SigK and GerE in the mother cells during the later stages of sporulation. The SscA-FLAG fusion protein was produced from T(5) of sporulation and incorporated into mature spores. sscA mutant spores exhibited poor germination, and Tricine-SDS-PAGE analysis showed that the coat protein profile of the mutant differed from that of the wild type. Bands corresponding to proteins at 59, 36, 5, and 3 kDa were reduced in the sscA null mutant. Western blot analysis of anti-CotB and anti-CotG antibodies showed reductions of the proteins at 59 kDa and 36 kDa in the sscA mutant spores. These proteins correspond to CotB and CotG. By immunoblot analysis of an anti-CotH antibody, we also observed that CotH was markedly reduced in the sscA mutant spores. It appears that SscA is a novel spore protein involved in the assembly of several components of the spore coat, including CotB, CotG, and CotH, and is associated with spore germination.


Assuntos
Bacillus subtilis , Proteínas de Bactérias/metabolismo , DNA Intergênico/genética , Regulação Bacteriana da Expressão Gênica , Proteínas Recombinantes de Fusão/metabolismo , Esporos Bacterianos , Sequência de Aminoácidos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Western Blotting , DNA Intergênico/química , Eletroforese em Gel de Poliacrilamida , Escherichia coli , Dados de Sequência Molecular , Mutação , Plasmídeos , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , RNA Mensageiro/análise , RNA Mensageiro/biossíntese , Proteínas Recombinantes de Fusão/genética , Esporos Bacterianos/química , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo , Transcrição Gênica , Transformação Bacteriana
11.
Biotechnol Lett ; 33(9): 1847-52, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21544609

RESUMO

Human interferon-ß (hIFN-ß) was used as a heterologous model protein to investigate the effects of the Bacillus subtilis AmyE propeptide and co-expression of PrsA in enhancing the secretion of heterologous proteins in B. subtilis. Secretion and activity of hIFN-ß with AmyE propeptide increased by more than four-fold compared to that without AmyE propeptide. Moreover, under conditions of co-expressed PrsA, the secretion production and activity of hIFN-ß with AmyE propeptide increased by more than 1.5-fold. AmyE propeptide and co-expression of PrsA thus have an additive effect on enhancing the production of the hIFN-ß in B. subtilis.


Assuntos
Bacillus subtilis/metabolismo , Interferon beta/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biotecnologia/métodos , Expressão Gênica , Humanos , Interferon beta/genética , Lipoproteínas/genética , Lipoproteínas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
12.
Genes Genet Syst ; 84(4): 315-8, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20057169

RESUMO

A genetic tool to introduce marker-free deletions is essential for multiple manipulations of genomes. We report a simple and efficient method to create marker-free deletion mutants of Bacillus subtilis through transformation with recombinant PCR products, using the Escherichia coli mazF gene encoding an endoribonuclease that cleaves free mRNAs as a counter-selection tool. Our method will be applicable to any bacterium in which introduction of the mazF cassette into the genome by double crossover homologous recombination is possible.


Assuntos
Bacillus subtilis/genética , Deleção de Genes , Genoma Bacteriano/genética , Recombinação Genética , Proteínas de Ligação a DNA/genética , Endorribonucleases/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Marcadores Genéticos/genética
13.
Biochim Biophys Acta ; 1770(4): 716-24, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17270351

RESUMO

A mutanase (alpha-1,3-glucanase)-producing microorganism was isolated from a soil sample and was identified as a relative of Paenibacillus sp. The mutanase was purified to homogeneity from culture, and its molecular mass was around 57 kDa. The gene for the mutanase was cloned by PCR using primers based on the N-terminal amino acid sequence of the purified enzyme. The determined nucleotide sequence of the gene consisted of 3651-bp open reading frame that encoded a predicted 1217-amino acid polypeptide including a 43-amino acid signal peptide. The mature enzyme showed similarity to mutanases RM1 of Bacillus sp. strain RM1 and KA-304 of Bacillus circulans with 65.6% and 62.7% identity, respectively. The predicted molecular mass of the mutanase was 123 kDa. Thus, the enzyme purified from the isolate appears to be truncated by proteolysis. The genes for the full-length and truncated mutanases were expressed in Bacillus subtilis cells, and the corresponding recombinant enzymes were purified to homogeneity. The molecular masses of the two enzymes were 116 and 57 kDa, respectively. The specific activity was 10-fold higher for the full-length enzyme than for the truncated enzyme. The optimal pH and temperature for both recombinant enzymes was pH 6.4 in citrate buffer and 45 degrees C to 50 degrees C. Amongst several tested polysaccharides, the recombinant full-length enzyme specifically hydrolyzed mutan.


Assuntos
Bacillus/enzimologia , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Microbiologia do Solo , Sequência de Aminoácidos , Bacillus/classificação , Sequência de Bases , Clonagem Molecular , Estabilidade Enzimática , Glicosídeo Hidrolases/isolamento & purificação , Glicosídeo Hidrolases/metabolismo , Concentração de Íons de Hidrogênio , Ponto Isoelétrico , Dados de Sequência Molecular , Peso Molecular , Mutação , Polissacarídeos/metabolismo , Proteínas Recombinantes/química , Análise de Sequência de DNA , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Temperatura
14.
Biochimie ; 90(3): 525-33, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17988780

RESUMO

Three mutanase (alpha-1,3-glucanase)-producing microorganisms isolated from soil samples were identified as a relatives of Paenibacillus. A mutanase was purified to homogeneity from cultures of each, and the molecular masses of the purified enzymes were approximately 132, 141, and 141kDa, respectively. The corresponding three genes for mutanases were cloned by PCR using primers designed from each N-terminal amino acid sequence. Another mutanase-like gene from one strain was also cloned by PCR using primers designed from conserved amino acid sequences among known mutanases. Consequently, four mutanase-like genes were sequenced. The genes contained long open reading frames of 3411 to 3915bp encoding 1136 to 1304 amino acids. The deduced amino acid sequences of the mutanases showed relatively high similarity to those of a mutanase (E16590) from Bacillus sp. RM1 with 46.9% to 73.2% identity and an alpha-1,3-glucanase (AB248056) from Bacillus circulans KA-304 with 46.7% to 70.4% identity. Phylogenetic analysis based on the amino acid sequences of the enzymes showed bacterial mutanases form a new family between fungal mutanases (GH family 71) and Streptomycetes mycodextranases (GH family 87).


Assuntos
Bactérias/enzimologia , Glicosídeo Hidrolases/classificação , Glicosídeo Hidrolases/genética , Sequência de Aminoácidos , Bactérias/classificação , Glicosídeo Hidrolases/química , Dados de Sequência Molecular , Mutação , Filogenia , Estrutura Terciária de Proteína , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos
15.
AMB Express ; 8(1): 110, 2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-29971620

RESUMO

Poly-gamma-glutamic acid (PGA) is a promising bio-based polymer that shares many functions with poly (acrylic acid) and its derivatives. Thus, technologies for efficient production and molecular size control of PGA are required to expand the application of this useful biopolymer. In Bacillus strains, PGA is synthesized by the PgsBCA protein complex, which is encoded by the pgsBCA gene operon, otherwise is known as ywsC and ywtAB operons and/or capBCA operon. Hence, we investigated responsible components of the PgsBCA complex in B. subtilis for over-production of PGA. In particular, we constructed genomic pgsBCA gene-deletion mutants of B. subtilis. And also, we assembled high copy-number plasmids harboring σA-dependent promoter, leading to high-level expression of all combinations of pgsBCA, pgsBC, pgsBA, pgsCA, pgsB, pgsC, and/or pgsA genes. Subsequently, PGA production of the transformed B. subtilis mutant was determined in batch fermentation using medium supplemented with L-glutamate. PGA production by the transformants introduced with pgsBC genes (lacking the genomic pgsBCA genes) was 26.0 ± 3.0 g L-1, and the enantiomeric ratio of D- and L-glutamic acid (D/L-ratio) in the produced PGA was 5/95. In contrast, D/L-ratio of produced PGA by the transformants introduced with pgsBCA genes (control strains) was 75/25. In conclusion, B. subtilis without pgsA gene could over-produce PGA with an L-rich enantiomeric ratio.

16.
Proteins ; 66(3): 600-10, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17154418

RESUMO

The crystal structure of alkaline liquefying alpha-amylase (AmyK) from the alkaliphilic Bacillus sp. KSM-1378 was determined at 2.1 A resolution. The AmyK structure belongs to the GH13 glycoside hydrolase family, which consists of three domains, and bound three calcium and one sodium ions. The alkaline adaptation mechanism of AmyK was investigated by the ancestral sequence evolutionary trace method and by extensive comparisons between alkaline and nonalkaline enzyme structures, including three other protein families: protease, cellulase, and phosphoserine aminotransferase. The consensus change for the alkaline adaptation process was a decrease in the Lys content. The loss of a Lys residue is associated with ion pair remodeling, which mainly consists of the loss of Lys-Asp/Glu ion pairs and the acquisition of Arg ion pairs, preferably Arg-Glu. The predicted replacements of the positively charged amino acids were often, although not always, used for ion pair remodeling.


Assuntos
Bacillus/enzimologia , Evolução Molecular , Concentração de Íons de Hidrogênio , alfa-Amilases/química , Aminoácidos/análise , Bacillus/genética , Proteínas de Bactérias/química , Cristalização , Cristalografia por Raios X , Modelos Moleculares , Filogenia , Conformação Proteica , Difração de Raios X , alfa-Amilases/genética
17.
Genes Genet Syst ; 82(1): 9-19, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17396016

RESUMO

Competent cell transformation with DNA obtained by the gentle lysis of protoplasts (LP transformation) was used to replace a large genomic region in this study. Discontinuity was detected in the replacement of the donor region tested, probably due to multiple crossover events involving a single donor genome fragment. To overcome discontinuous replacement, we inverted the genomic region to be replaced in the donor used for LP transformation. The replaced region in the transformant was identified to have a continuous genomic region originating from the donor genome. Furthermore, the genome region to be replaced was inverted in the recipient, and the same region and the flanking 10 kb region of both ends was inverted in the donor genome. LP transformation was conducted with the two inversion mutants and it is possible to restrict homologous recombination to the 10 kb flanking regions. Using this method, the 99 kb yxjG-yxbA region, the 249 kb pbpG-yxbA region and the 602 kb yvfT-yxbA region were suggested to be replaced continuously and accurately.


Assuntos
Bacillus subtilis/genética , DNA Bacteriano/metabolismo , Genoma Bacteriano , Transformação Bacteriana , Inversão Cromossômica , DNA Bacteriano/química , Marcadores Genéticos , Modelos Genéticos , Mutação , Protoplastos/metabolismo
18.
Biotechnol Appl Biochem ; 46(Pt 3): 169-78, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17115975

RESUMO

In 1997, the complete genomic DNA sequence of Bacillus subtilis (4.2 Mbp) was determined and 4100 genes were identified [Kunst, Ogasawara, Moszer, Albertini, Alloni, Azevedo, Bertero, Bessieres, Bolotin, Borchert, S. et al. (1997) Nature 90, 249-256]. In addition, B. subtilis, which shows an excellent ability to secrete proteins (enzymes) and antibiotics in large quantities outside the cell, plays an important role in industrial and medical fields. It is necessary to clarify the genes involved in the production of compounds by understanding the network of these 4100 genes and the proceeding analysis of genes of unknown functions. In promoting such a study, it is expected that the regulatory system of B. subtilis can be simplified by the creation of a Bacillus strain with a reduced genome by discriminating genes unnecessary for the production of proteins from essential genes, and deleting as many of these unnecessary genes as possible, which may help to understand this complex network of genes. We have previously distinguished essential and non-essential genes by evaluating the growth and enzyme-producing properties of strains of B. subtilis in which about 3000 genes (except 271 essential genes) have been disrupted or deleted singly, and have successfully utilized the findings from these studies in creating the MG1M strain with an approx. 1 Mbp deletion by serially deleting 17 unnecessary regions from the genome. This strain showed slightly reduced growth in enzyme-production medium, but no marked morphological changes. Moreover, we confirmed that the MG1M strain had cellulase and protease productivity comparable with that of the B. subtilis 168 strain, thus demonstrating that genome reduction does not contribute to a negative influence on enzyme productivity.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Componentes Genômicos/genética , Proteínas Recombinantes/biossíntese , Celulase/biossíntese , Genômica/métodos , Microbiologia Industrial/métodos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo
19.
J Biosci Bioeng ; 103(6): 501-8, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17630120

RESUMO

Subtilisin-like serine proteases from bacilli have been used in various industrial fields worldwide, particularly in the production of laundry and automatic dishwashing detergents. They belong to family A of the subtilase superfamily, which is composed of three clans, namely, true subtilisins, high-alkaline proteases, and intracellular proteases. We succeeded in the large-scale production of a high-alkaline protease (M-protease) from alkaliphilic Bacillus clausii KSM-K16, and the enzyme has been introduced into compact heavy-duty laundry detergents. We have also succeeded in the industrial-scale production of a new alkaline protease, KP-43, which was originally resistant to chemical oxidants and to surfactants, produced by alkaliphilic Bacillus sp. strain KSM-KP43 and have incorporated it into laundry detergents. KP-43 and related proteases form a new clan, oxidatively stable proteases, in subtilase family A. In this review, we describe the enzymatic properties, gene sequences, and crystal structures of M-protease, KP-43, and related enzymes.


Assuntos
Detergentes/química , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Sequência de Aminoácidos , Bacillus/enzimologia , Bacillus/genética , Cristalografia por Raios X , Detergentes/história , Genes Bacterianos , História do Século XX , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Conformação Proteica , Homologia de Sequência de Aminoácidos , Serina Endopeptidases/química , Serina Endopeptidases/história
20.
J Biosci Bioeng ; 103(1): 13-21, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17298895

RESUMO

The Bacillus subtilis spo0A mutant is an adequate host for extracellular protein production (e.g., alpha-amylase). However the mutant was prone to cell lysis. SDS-PAGE and zymography of cell wall lytic proteins indicated that the spo0A mutant contained high amounts of two major autolysins (LytC [CwlB] and LytD [CwlG]) and two minor cell wall lytic enzymes (LytE [CwlF] and LytF [CwlE]). On the other hand, the expression of eight extracellular protease genes was very poor or absent in the spo0A mutant. An eight-extracellular-protease-deficient mutant (Dpr8 strain) was constructed and the strain also exhibited cell lysis. The autolysins from the spo0A mutant were degraded by the supernatant of the wild type but not degraded by that of the Dpr8 mutant. These results suggest that the extensive cell lysis of the spo0A mutant was partially caused by the stability of autolysins via the decrease of the extracellular proteases. The introduction of a major autolysin and/or SigD mutations into the spo0A mutant was effective for preventing cell lysis.


Assuntos
Proteínas de Bactérias/genética , Bacteriólise/fisiologia , Membrana Celular/enzimologia , Escherichia coli/citologia , Escherichia coli/fisiologia , Melhoramento Genético/métodos , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Peptídeo Hidrolases/metabolismo , Engenharia de Proteínas/métodos , Fatores de Transcrição/genética , Membrana Celular/genética , Mutação , Peptídeo Hidrolases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA