Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Plant Cell Rep ; 43(2): 51, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308138

RESUMO

KEY MESSAGE: We generated a new Koshihikari rice line with a drastically reduced content of glutelin proteins and higher lodging resistance by using new and conventional plant breeding techniques. Using CRISPR/Cas9-mediated genome editing, we generated mutant rice with drastically decreased contents of major glutelins. A Koshihikari rice mutant line, a123, lacking four glutelins (GluA1, GluA2, GluB4, and GluB5) was used as a host, and another five major glutelin genes (GluA3, GluB1a, GluB1b, GluB2, and GluC) were knocked out through two iterations of Agrobacterium-mediated transformation. Mutant seeds were deficient in the GluA family, GluB family, and GluC, and the line obtained was named GluABC KO. Glutelin content was much lower in GluABC KO than in the existing low-glutelin rice mutant LGC-1. A null segregant of GluABC KO was selected using new-generation sequencing and backcrossing, and the sd-1 allele for the semi-dwarf trait was introduced to increase lodging resistance.


Assuntos
Glutens , Oryza , Glutens/genética , Glutens/metabolismo , Oryza/genética , Oryza/metabolismo , Melhoramento Vegetal , Sementes/genética , Sementes/metabolismo , Fenótipo
2.
Allergy Asthma Proc ; 42(4): 293-300, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34187621

RESUMO

Background: We previously developed a transgenic rice that contains seven linked human predominant T-cell epitopes (7Crp) derived from Japanese cedar (JC) pollen allergens Cry j 1 and Cry j 2. Oral administration of 80 g of transgenic rice for 20 weeks suppressed allergen-specific T-cell proliferation in participants with JC pollinosis, but their clinical symptoms did not improve. Objective: We examined the clinical efficacy of low-dose (5 g and 20 g) intake of the transgenic rice administered for two successive seasons. Methods: In this randomized, double-blind, placebo controlled study, transgenic rice seeds (5 g or 20 g) were orally administered to the participants for 24 weeks in each of two successive JC pollen seasons. We analyzed T-cell proliferation and cytokine expression, and monitored symptom and medication scores during the pollen season. Quality of life (QOL) was evaluated by using the Japanese Allergic Rhinitis Quality of Life Standard Questionnaire (JRQLQ). Results: Specific T-cell proliferation after stimulation with 7Crp, Cry j 1, and Cry j 2 was significantly suppressed in the second JC pollen season. No significant differences were found among the three groups (5 g, 20 g, and placebo) with regard to clinical symptoms or medication scores in the first season. However, the medication scores and face scale for overall condition of JRQLQ improved in the 5-g transgenic rice group in the second season, although careful re-examination with a large sample size is necessary to confirm the results. Conclusion: Low-dose oral administration of transgenic rice that contains 7Crp significantly reduced allergen-specific T-cell responses and improved medication scores during the second season of administration. Thus, oral intake of the transgenic rice has the potential to induce immune tolerance to JC pollen allergens when administered for at least two successive seasons.


Assuntos
Cryptomeria , Hipersensibilidade , Oryza , Administração Oral , Alérgenos , Antígenos de Plantas , Cryptomeria/imunologia , Epitopos de Linfócito T/genética , Humanos , Oryza/genética , Oryza/imunologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Pólen/imunologia , Qualidade de Vida
3.
Plant J ; 91(5): 840-848, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28621830

RESUMO

Reduction of the level of arsenic (As) in rice grains is an important challenge for agriculture. A recent study reported that the OsABCC1 transporter prevents the accumulation of As in grains by sequestering As-phytochelatin complexes into vacuoles in the upper nodes. However, how phytochelatins are provided in response to As remains unclear. Here, we show that the phytochelatin synthase OsPCS1 plays a crucial role in reducing As levels in rice grains. Using a forward genetic approach, we isolated two rice mutants (has1 and has2) in which As levels were much higher in grains but significantly lower in node I compared with the wild type. Map-based cloning identified the genes responsible as OsABCC1 in has1 and OsPCS1 in has2. The levels of As in grains and node I were similar between the two mutants, suggesting that OsABCC1 preferentially cooperates with OsPCS1 to sequester As, although rice has another phytochelatin synthase, OsPCS2. An in vitro phytochelatin synthesis assay indicated that OsPCS1 was more sensitive to activation by As than by cadmium, whereas OsPCS2 was more weakly activated by As than by cadmium. Transgenic plants highly expressing OsPCS1 showed significantly lower As levels in grains than did wild-type plants. Our results provide new knowledge of the relative contribution of rice PCS paralogs to As sequestration and suggest a good candidate tool to reduce As levels in rice grains.


Assuntos
Aminoaciltransferases/metabolismo , Arsênio/metabolismo , Oryza/enzimologia , Fitoquelatinas/metabolismo , Sequência de Aminoácidos , Aminoaciltransferases/genética , Mutação , Oryza/genética , Oryza/fisiologia , Plantas Geneticamente Modificadas , Alinhamento de Sequência , Vacúolos/metabolismo
4.
New Phytol ; 210(4): 1259-68, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26831622

RESUMO

In some eukaryotes, endoplasmic reticulum (ER) stress induces regulated inositol-requiring enzyme 1 (IRE1)-dependent decay (RIDD) of mRNAs. Recently, the expression levels of the mRNAs encoding some secretory proteins were reported to be downregulated by RIDD in the vegetative tissues of plants. However, the characteristics of plant RIDD have been insufficiently investigated due to difficulty of in planta analyses. Here, the RIDD susceptibilities of various mRNAs that are difficult to analyze in planta were examined using transient expression analyses of rice protoplasts. In this system, the mRNAs encoding three rice seed storage proteins (SSPs) - namely α-globulin, 16-kDa prolamin and 10-kDa prolamin - were downregulated in response to ER stress. The rapid ER stress-induced degradation of these mRNAs was repressed in cells in which the ribonuclease activity of IRE1 was specifically abolished by genome editing, suggesting that the mRNAs encoding certain SSPs are strong targets of RIDD. Furthermore, we investigated whether these RIDD targets are substrates of the IRE1 ribonuclease using a recombinant IRE1 protein, and identified candidate IRE1-mediated cleavage sites. Overall, the results demonstrate the existence of a post-transcriptional mechanism of regulation of SSPs, and illustrate the basic and multifaceted characteristics of RIDD in higher plants.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Oryza/fisiologia , Ribonucleases/metabolismo , alfa-Globulinas/genética , alfa-Globulinas/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Oryza/enzimologia , Oryza/genética , Prolaminas/genética , Prolaminas/metabolismo , Protoplastos , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , RNA Mensageiro/genética , Ribonucleases/genética , Proteínas de Armazenamento de Sementes/genética , Proteínas de Armazenamento de Sementes/metabolismo
5.
Breed Sci ; 65(5): 363-71, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26719738

RESUMO

Galactinol synthase (GolS) is considered to be a key regulator of the biosynthesis of Raffinose family oligosaccharides (RFOs). Accumulation of RFOs has been reported to play a role in protection against abiotic stresses. We identified two cDNAs encoding galactinol synthase from wheat (Triticum aestivum L.), which we designated as TaGolS1 and TaGolS2. Expression of the two TaGolS genes was induced by cold stress but not by drought, heat stress or ABA treatment in wheat. We generated transgenic lines of rice (Oryza sativa L.) constitutively overexpressing TaGolS1 or TaGolS2. These transgenic plants accumulated significantly higher levels of galactinol and raffinose than did wild-type plants and exhibited enhanced cold-stress tolerance. The results demonstrate the involvement of galactinol and raffinose in the development of chilling stress in rice and indicate that the genetic modification of the biosynthesis of RFOs by transformation with GolS genes could be an effective method for enhancing chilling-stress tolerance in rice.

6.
Mol Plant Microbe Interact ; 27(9): 975-82, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24964058

RESUMO

OsCERK1 is a rice receptor-like kinase that mediates the signal of a fungal cell wall component, chitin, by coordinating with a lysin motif (LysM)-containing protein CEBiP. To further elucidate the function of OsCERK1 in the defense response, we disrupted OsCERK1 using an Agrobacterium-mediated gene targeting system based on homologous recombination. In OsCERK1-disrupted lines, the generation of hydrogen peroxide and the alteration of gene expression in response to a chitin oligomer were completely abolished. The OsCERK1-disrupted lines also showed lowered responsiveness to a bacterial cell wall component, peptidoglycan. Yeast two-hybrid analysis indicated that OsCERK1 interacts with the LysM-containing proteins LYP4 and LYP6, which are known to participate in the peptidoglycan response in rice. Observation of the infection behavior of rice blast fungus (Magnaporthe oryzae) revealed that disruption of OsCERK1 led to increased hyphal growth in leaf sheath cells. Green fluorescent protein-tagged OsCERK1 was localized around the primary infection hyphae. These results demonstrate that OsCERK1 is indispensable for chitin perception and participates in innate immunity in rice, and also mediates the peptidoglycan response. It is also suggested that OsCERK1 mediates the signaling pathways of both fungal and bacterial molecular patterns by interacting with different LysM-containing receptor-like proteins.


Assuntos
Quitina/metabolismo , Magnaporthe/fisiologia , Oryza/enzimologia , Peptidoglicano/metabolismo , Doenças das Plantas/imunologia , Proteínas de Plantas/imunologia , Motivos de Aminoácidos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Marcação de Genes , Genes Reporter , Peróxido de Hidrogênio/metabolismo , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/genética , Oryza/imunologia , Oryza/microbiologia , Doenças das Plantas/microbiologia , Imunidade Vegetal , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Quinases/genética , Proteínas Quinases/imunologia , Proteínas Quinases/metabolismo , Transdução de Sinais
7.
Plant Mol Biol ; 84(4-5): 519-28, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24173912

RESUMO

CEBiP, a plasma membrane-localized glycoprotein of rice, directly binds with chitin elicitors (CE), and has been identified as a receptor for CE by using CEBiP-RNAi rice cells. To further clarify the function of CEBiP, we produced CEBiP-disrupted rice plants by applying an efficient Agrobacterium-mediated gene-targeting system based on homologous recombination, which has recently been developed for rice. Homologous recombination occurred at the CEBiP locus in ~0.5 % of the positive/negative selected calli. In the self-pollinated next generation, it was confirmed that the first exon of CEBiP was replaced with the hygromycin selection cassette as designed, and that the expression of CEBiP was completely deficient in homozygous cebip lines. Affinity-labeling analysis using biotinylated N-acetylchitooctaose demonstrated that CEBiP is the major CE-binding protein in rice cultured cells and leaves, which was consistent with the result that the response to CE in cebip cells was greatly diminished. Nevertheless, we observed a significant decrease in disease resistance against Magnaporthe oryzae, the causal agent of rice blast disease, only when the cebip leaf sheaths were inoculated with a weakly virulent strain, suggesting that CE perception during the infection process of M. oryzae is limited. The response to peptidoglycan and lipopolysaccharides in cebip cells was not affected, strongly suggesting that CEBiP is a CE-specific receptor.


Assuntos
Quitina/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Sequência de Bases , Eletroforese em Gel de Poliacrilamida , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Teste de Complementação Genética , Interações Hospedeiro-Patógeno , Peróxido de Hidrogênio/metabolismo , Magnaporthe/fisiologia , Mutação , Oligossacarídeos/metabolismo , Oligossacarídeos/farmacologia , Oryza/genética , Oryza/microbiologia , Peptidoglicano/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Ligação Proteica , Interferência de RNA , Receptores de Reconhecimento de Padrão/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Plant Cell Physiol ; 55(11): 1864-72, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25231970

RESUMO

Plants are constantly exposed to threats from pathogenic microbes and thus developed an innate immune system to protect themselves. On the other hand, many plants also have the ability to establish endosymbiosis with beneficial microbes such as arbuscular mycorrhizal (AM) fungi or rhizobial bacteria, which improves the growth of host plants. How plants evolved these systems managing such opposite plant-microbe interactions is unclear. We show here that knockout (KO) mutants of OsCERK1, a rice receptor kinase essential for chitin signaling, were impaired not only for chitin-triggered defense responses but also for AM symbiosis, indicating the bifunctionality of OsCERK1 in defense and symbiosis. On the other hand, a KO mutant of OsCEBiP, which forms a receptor complex with OsCERK1 and is essential for chitin-triggered immunity, established mycorrhizal symbiosis normally. Therefore, OsCERK1 but not chitin-triggered immunity is required for AM symbiosis. Furthermore, experiments with chimeric receptors showed that the kinase domains of OsCERK1 and homologs from non-leguminous, mycorrhizal plants could trigger nodulation signaling in legume-rhizobium interactions as the kinase domain of Nod factor receptor1 (NFR1), which is essential for triggering the nodulation program in leguminous plants, did. Because leguminous plants are believed to have developed the rhizobial symbiosis on the basis of AM symbiosis, our results suggest that the symbiotic function of ancestral CERK1 in AM symbiosis enabled the molecular evolution to leguminous NFR1 and resulted in the establishment of legume-rhizobia symbiosis. These results also suggest that OsCERK1 and homologs serve as a molecular switch that activates defense or symbiotic responses depending on the infecting microbes.


Assuntos
Quitina/metabolismo , Micorrizas/fisiologia , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Simbiose , Motivos de Aminoácidos , Sequência de Aminoácidos , Quitina/imunologia , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Teste de Complementação Genética , Lotus/genética , Dados de Sequência Molecular , Mutação , Oryza/imunologia , Oryza/microbiologia , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Rhizobium/fisiologia , Transdução de Sinais
9.
BMC Plant Biol ; 14: 101, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24742282

RESUMO

BACKGROUND: The endoplasmic reticulum (ER) stress response is widely known to function in eukaryotes to maintain the homeostasis of the ER when unfolded or misfolded proteins are overloaded in the ER. To understand the molecular mechanisms of the ER stress response in rice (Oryza sativa L.), we previously analyzed the expression profile of stably transformed rice in which an ER stress sensor/transducer OsIRE1 was knocked-down, using the combination of preliminary microarray and quantitative RT-PCR. In this study, to obtain more detailed expression profiles of genes involved in the initial stages of the ER stress response in rice, we performed RNA sequencing of wild-type and transgenic rice plants produced by homologous recombination in which endogenous genomic OsIRE1 was replaced by missense alleles defective in ribonuclease activity. RESULTS: At least 38,076 transcripts were investigated by RNA sequencing, 380 of which responded to ER stress at a statistically significant level (195 were upregulated and 185 were downregulated). Furthermore, we successfully identified 17 genes from the set of 380 ER stress-responsive genes that were not included in the probe set of the currently available microarray chip in rice. Notably, three of these 17 genes were non-annotated genes, even in the latest version of the Rice Annotation Project Data Base (RAP-DB, version IRGSP-1.0). CONCLUSIONS: Therefore, RNA sequencing-mediated expression profiling provided valuable information about the ER stress response in rice plants and led to the discovery of new genes related to ER stress.


Assuntos
Estresse do Retículo Endoplasmático/genética , Perfilação da Expressão Gênica/métodos , Oryza/genética , Análise de Sequência de RNA , Transcriptoma/genética , Sequência de Bases , Bases de Dados Genéticas , Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genes de Plantas , Estudos de Associação Genética , Anotação de Sequência Molecular , Raízes de Plantas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Plântula/genética , Homologia de Sequência do Ácido Nucleico
10.
Plant Cell Physiol ; 53(4): 755-61, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22327484

RESUMO

We have developed a high-frequency method for Agrobacterium-mediated gene targeting by combining an efficient transformation system using rice suspension-cultured calli and a positive/negative selection system. Compared with the conventional transformation system using calli on solid medium, transformation using suspension-cultured calli resulted in a 5- to 10-fold increase in the number of resistant calli per weight of starting material after positive/negative selection. Homologous recombination occurred in about 1.5% of the positive/negative selected calli. To evaluate the efficacy of our method, we show in this report that knockout rice plants containing either a disrupted Waxy (granule-bound starch synthase) or a disrupted Xyl (ß1,2-xylosyltransferase) gene can be easily obtained by homologous recombination. Study of gene function using homologous recombination in higher plants can now be considered routine work as a direct result of this technical advance.


Assuntos
Agrobacterium/genética , Oryza/genética , Pentosiltransferases/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Sintase do Amido/genética , Marcação de Genes/métodos , Oryza/enzimologia , Transformação Genética/genética , UDP Xilose-Proteína Xilosiltransferase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA