Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542069

RESUMO

Rosmarinic acid is a well-known natural antioxidant and anti-inflammatory compound, and it is one of the polyphenolic compounds found in comfrey plants. Comfrey root also contains allantoin, which helps with new skin regeneration. This study aimed to investigate the healing and skin regeneration process of skin wounds in Wistar rats using creams based on comfrey extract and to correlate the results with active compounds in the extract. The obtained results showed that comfrey root is rich in bioactive compounds, including allantoin, salvianolic acid, and rosmarinic acid, which are known for their great free radical scavenging activity, and the high antioxidant activity of the extract may be mainly due to these compounds. The obtained extract has an antimicrobial effect on Staphylococcus aureus (1530.76/382.69), Escherichia coli (6123.01/6123.01), and Pseudomonas aeruginosa (6123.01/6123.01). The macroscopic evaluation and the histological analysis of the skin defects 14 days after the intervention showed faster healing and complete healing in the skin excisions treated with oil-in-water cream with 20% extract of comfrey as the active ingredient.


Assuntos
Boraginaceae , Confrei , Ratos , Animais , Alantoína/farmacologia , Extratos Vegetais/farmacologia , Ratos Wistar , Cicatrização , Antioxidantes/farmacologia
2.
Plants (Basel) ; 13(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38498559

RESUMO

Considering that Sorbus aucuparia fruits have been underutilized despite their tremendous potential, this study aimed to correlate the in vitro antioxidant, antibacterial and cell-protective abilities of fruit extracts derived from Sorbus aucuparia Romanian cultivars with their phytochemical composition. Therefore, following the preparation of ethanolic and carotenoid extracts, phytochemical screening was performed using UV-Vis and HPLC-DAD-ESI-MS methods. The antioxidant activity was analyzed using DPPH and FRAP tests. As the results revealed high contents of bioactive compounds (polyphenols 1.11 mg GAE/g DM, flavonoids 430.06 µg QE/g DM and carotenoids 95.68 µg/g DM) and an important antiradical action (DPPH 24.51 mg/mL and FRAP 0.016 µM TE/mL), we chose to further examine the fruits' biological properties. The antibacterial capacity was assessed employing agar well diffusion and broth microdilution techniques, with fruits displaying an intense activity against MSSA, MRSA and Enterococcus faecalis, but also E. coli and Pseudomonas aeruginosa. The cell-protective activity was analyzed on gentamicin-stressed renal cells, through MTT and Annexin V-FITC assays. Importantly, a significant increase in viability was registered on stressed cells following extract administration in low doses; nevertheless, viability was noticed to decline when exposed to elevated concentrations, potentially due to the cumulative actions of the extract and gentamicin. These findings offer novel light on the antibacterial activity of Sorbus aucuparia Romanian cultivars, as well as their cell-protective ability in renal cell injury.

3.
Gels ; 10(6)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38920905

RESUMO

The UV-B component of sunlight damages the DNA in skin cells, which can lead to skin cancer and premature aging. Therefore, it is necessary to use creams that also contain UV-active substances. Many sunscreens contain titanium dioxide due to its capacity to absorb UV-B wavelengths. In the present study, titan dioxide was introduced in alginate and chitosan-alginate hydrogel composites that are often involved as scaffold compositions in tissue engineering applications. Alginate and chitosan were chosen due to their important role in skin regeneration and skin protection. The composites were cross-linked with calcium ions and investigated using FT-IR, Raman, and UV-Vis spectroscopy. The stability of the obtained samples under solar irradiation for skin protection and regeneration was analyzed. Then, the hydrogel composites were assayed in vitro by immersing them in simulated body fluid and exposing them to solar simulator radiation for 10 min. The samples were found to be stable under solar light, and a thin apatite layer covered the surface of the sample with the two biopolymers and titanium dioxide. The in vitro cell viability assay suggested that the anatase phase in alginate and chitosan-alginate hydrogel composites have a positive impact.

4.
Plants (Basel) ; 13(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38999630

RESUMO

The species of the genus Euphrasia present important medicinal potential according to their traditional uses. However, few studies aim to sustain this fact by scientific evidence. The present study aimed to explore the phytochemical profile and investigate the antioxidant, antimicrobial and antiproliferative potential of E. officinalis subsp. pratensis Fr. (EO) and E. stricta J.P.Wolff ex J.F.Lehm (ES). The tested samples consisted of ethanolic extracts. The identification and quantification of phenolic compounds were performed using spectrophotometric and LC-MS/MS methods. The antioxidant capacity was evaluated using the DPPH, FRAP and xanthine oxidase methods. Antimicrobial properties were screened using disk diffusion, broth microdilution and anti-biofilm assays, while antiproliferative potential was assessed on a colorectal adenocarcinoma human cancer cell line (DLD-1). The LC-MS/MS analysis showed chlorogenic acid and rutin as the dominant constituents in the tested extracts. The antioxidant activity assays showed important capacity for both samples; in vitro antimicrobial and anti-biofilm properties were exhibited, especially against Gram-positive bacteria, and an important inhibitory potential was observed on the proliferation of the DLD-1 cell line. The findings in the present study contribute to the recommendation of EO and ES for the prevention and treatment of oxidative stress-related pathologies, cancer and microbial infections.

5.
Membranes (Basel) ; 14(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38248701

RESUMO

The aim of this research is to develop new nanocomposite membranes (NMs) for guided bone regeneration from polycaprolactone (PCL), with different concentrations of gentamicin sulfate (GEN) and nano-hydroxyapatite (nHAP) through electrospinning. The obtained NMs were characterized for structure through SEM and AFM, which revealed the influence of GEN and nHAP on the fiber diameter. The addition of GEN lowered the fiber diameter, and the addition of nHAP increased the diameter of the fibers. The NMs demonstrated antibacterial properties against P. aeruginosa, S. aureus, B. cereus, and E. coli depending on the drug concentration, while being negligibly affected by the nHAP content. NM cytotoxicity assessment, performed once using the MTT assay, revealed no cytotoxicity. The developed NMs could be a promising alternative for guided bone regeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA