Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Nature ; 628(8009): 863-871, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570687

RESUMO

Vertebrate organs require locally adapted blood vessels1,2. The gain of such organotypic vessel specializations is often deemed to be molecularly unrelated to the process of organ vascularization. Here, opposing this model, we reveal a molecular mechanism for brain-specific angiogenesis that operates under the control of Wnt7a/b ligands-well-known blood-brain barrier maturation signals3-5. The control mechanism relies on Wnt7a/b-dependent expression of Mmp25, which we find is enriched in brain endothelial cells. CRISPR-Cas9 mutagenesis in zebrafish reveals that this poorly characterized glycosylphosphatidylinositol-anchored matrix metalloproteinase is selectively required in endothelial tip cells to enable their initial migration across the pial basement membrane lining the brain surface. Mechanistically, Mmp25 confers brain invasive competence by cleaving meningeal fibroblast-derived collagen IV α5/6 chains within a short non-collagenous region of the central helical part of the heterotrimer. After genetic interference with the pial basement membrane composition, the Wnt-ß-catenin-dependent organotypic control of brain angiogenesis is lost, resulting in properly patterned, yet blood-brain-barrier-defective cerebrovasculatures. We reveal an organ-specific angiogenesis mechanism, shed light on tip cell mechanistic angiodiversity and thereby illustrate how organs, by imposing local constraints on angiogenic tip cells, can select vessels matching their distinctive physiological requirements.


Assuntos
Encéfalo , Neovascularização Fisiológica , Animais , Membrana Basal/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/citologia , Encéfalo/citologia , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Movimento Celular , Colágeno Tipo IV/metabolismo , Sistemas CRISPR-Cas/genética , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Meninges/citologia , Meninges/irrigação sanguínea , Meninges/metabolismo , Especificidade de Órgãos , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
2.
Nature ; 589(7842): 448-455, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33328637

RESUMO

FAT1, which encodes a protocadherin, is one of the most frequently mutated genes in human cancers1-5. However, the role and the molecular mechanisms by which FAT1 mutations control tumour initiation and progression are poorly understood. Here, using mouse models of skin squamous cell carcinoma and lung tumours, we found that deletion of Fat1 accelerates tumour initiation and malignant progression and promotes a hybrid epithelial-to-mesenchymal transition (EMT) phenotype. We also found this hybrid EMT state in FAT1-mutated human squamous cell carcinomas. Skin squamous cell carcinomas in which Fat1 was deleted presented increased tumour stemness and spontaneous metastasis. We performed transcriptional and chromatin profiling combined with proteomic analyses and mechanistic studies, which revealed that loss of function of FAT1 activates a CAMK2-CD44-SRC axis that promotes YAP1 nuclear translocation and ZEB1 expression that stimulates the mesenchymal state. This loss of function also inactivates EZH2, promoting SOX2 expression, which sustains the epithelial state. Our comprehensive analysis identified drug resistance and vulnerabilities in FAT1-deficient tumours, which have important implications for cancer therapy. Our studies reveal that, in mouse and human squamous cell carcinoma, loss of function of FAT1 promotes tumour initiation, progression, invasiveness, stemness and metastasis through the induction of a hybrid EMT state.


Assuntos
Caderinas/deficiência , Transição Epitelial-Mesenquimal/genética , Deleção de Genes , Metástase Neoplásica/genética , Neoplasias/genética , Neoplasias/patologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Caderinas/genética , Caderinas/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Progressão da Doença , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Humanos , Receptores de Hialuronatos/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mesoderma/metabolismo , Mesoderma/patologia , Camundongos , Metástase Neoplásica/tratamento farmacológico , Neoplasias/tratamento farmacológico , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fenótipo , Fosfoproteínas/análise , Fosfoproteínas/metabolismo , Proteômica , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Quinases da Família src/metabolismo
3.
EMBO J ; 41(7): e108747, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35266581

RESUMO

Mesoderm arises at gastrulation and contributes to both the mouse embryo proper and its extra-embryonic membranes. Two-photon live imaging of embryos bearing a keratin reporter allowed recording filament nucleation and elongation in the extra-embryonic region. Upon separation of amniotic and exocoelomic cavities, keratin 8 formed apical cables co-aligned across multiple cells in the amnion, allantois, and blood islands. An influence of substrate rigidity and composition on cell behavior and keratin content was observed in mesoderm explants. Embryos lacking all keratin filaments displayed a deflated extra-embryonic cavity, a narrow thick amnion, and a short allantois. Single-cell RNA sequencing of sorted mesoderm cells and micro-dissected amnion, chorion, and allantois, provided an atlas of transcriptomes with germ layer and regional information. It defined the cytoskeleton and adhesion expression profile of mesoderm-derived keratin 8-enriched cells lining the exocoelomic cavity. Those findings indicate a novel role for keratin filaments in the expansion of extra-embryonic structures and suggest mechanisms of mesoderm adaptation to the environment.


Assuntos
Gastrulação , Mesoderma , Animais , Embrião de Mamíferos , Membranas Extraembrionárias , Queratinas/genética , Queratinas/metabolismo , Mesoderma/metabolismo , Camundongos
4.
Arterioscler Thromb Vasc Biol ; 44(3): 620-634, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38152888

RESUMO

BACKGROUND: The ability to respond to mechanical forces is a basic requirement for maintaining endothelial cell (ECs) homeostasis, which is continuously subjected to low shear stress (LSS) and high shear stress (HSS). In arteries, LSS and HSS have a differential impact on EC autophagy processes. However, it is still unclear whether LSS and HSS differently tune unique autophagic machinery or trigger specific autophagic responses in ECs. METHODS: Using fluid flow system to generate forces on EC and multiscale imaging analyses on ApoE-/- mice whole arteries, we studied the cellular and molecular mechanism involved in autophagic response to LSS or HSS on the endothelium. RESULTS: We found that LSS and HSS trigger autophagy activation by mobilizing specific autophagic signaling modules. Indeed, LSS-induced autophagy in endothelium was independent of the class III PI3K (phosphoinositide 3-kinase) VPS34 (vacuolar sorting protein 34) but controlled by the α isoform of class II PI3K (phosphoinositide 3-kinase class II α [PI3KCIIα]). Accordingly, reduced PI3KCIIα expression in ApoE-/- mice (ApoE-/-PI3KCIIα+/-) led to EC dysfunctions associated with increased plaque deposition in the LSS regions. Mechanistically, we revealed that PI3KCIIα inhibits mTORC1 (mammalian target of rapamycin complex 1) activation and that rapamycin treatment in ApoE-/-PI3KCIIα+/- mice specifically rescue autophagy in arterial LSS regions. Finally, we demonstrated that absence of PI3KCIIα led to decreased endothelial primary cilium biogenesis in response to LSS and that ablation of primary cilium mimics PI3KCIIα-decreased expression in EC dysfunction, suggesting that this organelle could be the mechanosensor linking PI3KCIIα and EC homeostasis. CONCLUSIONS: Our data reveal that mechanical forces variability within the arterial system determines EC autophagic response and supports a central role of PI3KCIIα/mTORC1 axis to prevent EC dysfunction in LSS regions.


Assuntos
Aterosclerose , Classe I de Fosfatidilinositol 3-Quinases , Animais , Humanos , Camundongos , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/genética , Aterosclerose/prevenção & controle , Aterosclerose/metabolismo , Autofagia , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/metabolismo , Mamíferos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Estresse Mecânico , Classe I de Fosfatidilinositol 3-Quinases/metabolismo
5.
PLoS Pathog ; 18(6): e1010621, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35771771

RESUMO

Brucellae are facultative intracellular Gram-negative coccobacilli that chronically infect various mammals and cause brucellosis. Human brucellosis is among the most common bacterial zoonoses and the vast majority of cases are attributed to B. melitensis. Using transposon sequencing (Tn-seq) analysis, we showed that among 3369 predicted genes of the B. melitensis genome, 861 are required for optimal growth in rich medium and 186 additional genes appeared necessary for survival of B. melitensis in RAW 264.7 macrophages in vitro. As the mucosal immune system represents the first defense against Brucella infection, we investigated the early phase of pulmonary infection in mice. In situ analysis at the single cell level indicates a succession of killing and growth phases, followed by heterogenous proliferation of B. melitensis in alveolar macrophages during the first 48 hours of infection. Tn-seq analysis identified 94 additional genes that are required for survival in the lung at 48 hours post infection. Among them, 42 genes are common to RAW 264.7 macrophages and the lung conditions, including the T4SS and purine synthesis genes. But 52 genes are not identified in RAW 264.7 macrophages, including genes implicated in lipopolysaccharide (LPS) biosynthesis, methionine transport, tryptophan synthesis as well as fatty acid and carbohydrate metabolism. Interestingly, genes implicated in LPS synthesis and ß oxidation of fatty acids are no longer required in Interleukin (IL)-17RA-/- mice and asthmatic mice, respectively. This demonstrates that the immune status determines which genes are required for optimal survival and growth of B. melitensis in vivo.


Assuntos
Brucella melitensis , Brucelose , Administração Intranasal , Animais , Brucella melitensis/genética , Brucella melitensis/metabolismo , Lipopolissacarídeos/metabolismo , Macrófagos , Mamíferos , Camundongos
6.
Biophys J ; 120(18): 4091-4106, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34384765

RESUMO

It has been observed in vitro that complete clot lysis is generally preceded by a slow phase of lysis during which the degradation seems to be inefficient. However, this slow regime was merely noticed, but not yet quantitatively discussed. In our experiments, we observed that the lysis ubiquitously occurred in two distinct regimes, a slow and a fast lysis regime. We quantified extensively the duration of these regimes for a wide spectrum of experimental conditions and found that on average, the slow regime lasts longer than the fast one, meaning that during most of the process, the lysis is ineffective. We proposed a computational model in which the properties of the binding of the proteins change during the lysis: first, the biochemical reactions take place at the surface of the fibrin fibers, then in the bulk, resulting in the observed fast lysis regime. This simple hypothesis appeared to be sufficient to reproduce with a great accuracy the lysis profiles obtained experimentally.


Assuntos
Fibrina , Trombose , Fibrinólise , Humanos
7.
J Eukaryot Microbiol ; 68(3): e12846, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33624359

RESUMO

The mitochondrion is crucial for ATP generation by oxidative phosphorylation, among other processes. Cristae are invaginations of the mitochondrial inner membrane that house nearly all the macromolecular complexes that perform oxidative phosphorylation. The unicellular parasite Trypanosoma brucei undergoes during its life cycle extensive remodeling of its single mitochondrion, which reflects major changes in its energy metabolism. While the bloodstream form (BSF) generates ATP exclusively by substrate-level phosphorylation and has a morphologically highly reduced mitochondrion, the insect-dwelling procyclic form (PCF) performs oxidative phosphorylation and has an expanded and reticulated organelle. Here, we have performed high-resolution 3D reconstruction of BSF and PCF mitochondria, with a particular focus on their cristae. By measuring the volumes and surface areas of these structures in complete or nearly complete cells, we have found that mitochondrial cristae are more prominent in BSF than previously thought and their biogenesis seems to be maintained during the cell cycle. Furthermore, PCF cristae exhibit a surprising range of volumes in situ, implying that each crista is acting as an independent bioenergetic unit. Cristae appear to be particularly enriched in the region of the organelle between the nucleus and kinetoplast, the mitochondrial genome, suggesting this part has distinctive properties.


Assuntos
Trypanosoma brucei brucei , Animais , Ciclo Celular , Núcleo Celular , Estágios do Ciclo de Vida , Mitocôndrias
8.
Nature ; 501(7467): 430-4, 2013 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-23965626

RESUMO

The African parasite Trypanosoma brucei gambiense accounts for 97% of human sleeping sickness cases. T. b. gambiense resists the specific human innate immunity acting against several other tsetse-fly-transmitted trypanosome species such as T. b. brucei, the causative agent of nagana disease in cattle. Human immunity to some African trypanosomes is due to two serum complexes designated trypanolytic factors (TLF-1 and -2), which both contain haptoglobin-related protein (HPR) and apolipoprotein LI (APOL1). Whereas HPR association with haemoglobin (Hb) allows TLF-1 binding and uptake via the trypanosome receptor TbHpHbR (ref. 5), TLF-2 enters trypanosomes independently of TbHpHbR (refs 4, 5). APOL1 kills trypanosomes after insertion into endosomal/lysosomal membranes. Here we report that T. b. gambiense resists TLFs via a hydrophobic ß-sheet of the T. b. gambiense-specific glycoprotein (TgsGP), which prevents APOL1 toxicity and induces stiffening of membranes upon interaction with lipids. Two additional features contribute to resistance to TLFs: reduction of sensitivity to APOL1 requiring cysteine protease activity, and TbHpHbR inactivation due to a L210S substitution. According to such a multifactorial defence mechanism, transgenic expression of T. b. brucei TbHpHbR in T. b. gambiense did not cause parasite lysis in normal human serum. However, these transgenic parasites were killed in hypohaptoglobinaemic serum, after high TLF-1 uptake in the absence of haptoglobin (Hp) that competes for Hb and receptor binding. TbHpHbR inactivation preventing high APOL1 loading in hypohaptoglobinaemic serum may have evolved because of the overlapping endemic area of T. b. gambiense infection and malaria, the main cause of haemolysis-induced hypohaptoglobinaemia in western and central Africa.


Assuntos
Apolipoproteínas/sangue , Apolipoproteínas/metabolismo , Lipoproteínas HDL/sangue , Lipoproteínas HDL/metabolismo , Trypanosoma brucei gambiense/fisiologia , África , Animais , Animais Geneticamente Modificados , Apolipoproteína L1 , Apolipoproteínas/antagonistas & inibidores , Apolipoproteínas/toxicidade , Membrana Celular/química , Membrana Celular/metabolismo , Cisteína Proteases/metabolismo , Haptoglobinas/metabolismo , Hemoglobinas/metabolismo , Hemólise , Humanos , Interações Hidrofóbicas e Hidrofílicas , Metabolismo dos Lipídeos , Lipoproteínas HDL/antagonistas & inibidores , Lipoproteínas HDL/química , Lipoproteínas HDL/toxicidade , Parasitos/patogenicidade , Parasitos/fisiologia , Estrutura Secundária de Proteína , Soro/química , Soro/parasitologia , Trypanosoma brucei gambiense/efeitos dos fármacos , Trypanosoma brucei gambiense/patogenicidade , Tripanossomíase Africana/parasitologia , Glicoproteínas Variantes de Superfície de Trypanosoma/química , Glicoproteínas Variantes de Superfície de Trypanosoma/metabolismo
9.
Hum Mol Genet ; 25(4): 740-54, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26685160

RESUMO

The congenital malformation split hand/foot (SHFM) is characterized by missing central fingers and dysmorphology or fusion of the remaining ones. Type-1 SHFM is linked to deletions/rearrangements of the DLX5-DLX6 locus and point mutations in the DLX5 gene. The ectrodactyly phenotype is reproduced in mice by the double knockout (DKO) of Dlx5 and Dlx6. During limb development, the apical ectodermal ridge (AER) is a key-signaling center responsible for early proximal-distal growth and patterning. In Dlx5;6 DKO hindlimbs, the central wedge of the AER loses multilayered organization and shows down-regulation of FGF8 and Dlx2. In search for the mechanism, we examined the non-canonical Wnt signaling, considering that Dwnt-5 is a target of distalless in Drosophila and the knockout of Wnt5, Ryk, Ror2 and Vangl2 in the mouse causes severe limb malformations. We found that in Dlx5;6 DKO limbs, the AER expresses lower levels of Wnt5a, shows scattered ß-catenin responsive cells and altered basolateral and planar cell polarity (PCP). The addition of Wnt5a to cultured embryonic limbs restored the expression of AER markers and its stratification. Conversely, the inhibition of the PCP molecule c-jun N-terminal kinase caused a loss of AER marker expression. In vitro, the addition of Wnt5a on mixed primary cultures of embryonic ectoderm and mesenchyme was able to confer re-polarization. We conclude that the Dlx-related ectrodactyly defect is associated with the loss of basoapical and PCP, due to reduced Wnt5a expression and that the restoration of the Wnt5a level is sufficient to partially reverts AER misorganization and dysmorphology.


Assuntos
Proteínas de Homeodomínio/genética , Deformidades Congênitas dos Membros/genética , Deformidades Congênitas dos Membros/patologia , Proteína Wnt-5a/farmacologia , Animais , Polaridade Celular/efeitos dos fármacos , Polaridade Celular/fisiologia , Modelos Animais de Doenças , Regulação para Baixo , Ectoderma/metabolismo , Ectoderma/patologia , Proteínas de Homeodomínio/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Deformidades Congênitas dos Membros/tratamento farmacológico , Deformidades Congênitas dos Membros/metabolismo , Mesoderma/metabolismo , Camundongos , Camundongos Knockout , Transativadores/genética , Via de Sinalização Wnt , Proteína Wnt-5a/biossíntese , Proteína Wnt-5a/deficiência , Proteína Wnt-5a/genética , beta Catenina/metabolismo
10.
PLoS Pathog ; 12(7): e1005744, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27441553

RESUMO

Tsetse flies are the sole vectors of Trypanosoma brucei parasites that cause sleeping sickness. Our knowledge on the early interface between the infective metacyclic forms and the mammalian host skin is currently highly limited. Glossina morsitans flies infected with fluorescently tagged T. brucei parasites were used in this study to initiate natural infections in mice. Metacyclic trypanosomes were found to be highly infectious through the intradermal route in sharp contrast with blood stream form trypanosomes. Parasite emigration from the dermal inoculation site resulted in detectable parasite levels in the draining lymph nodes within 18 hours and in the peripheral blood within 42 h. A subset of parasites remained and actively proliferated in the dermis. By initiating mixed infections with differentially labeled parasites, dermal parasites were unequivocally shown to arise from the initial inoculum and not from a re-invasion from the blood circulation. Scanning electron microscopy demonstrated intricate interactions of these skin-residing parasites with adipocytes in the connective tissue, entanglement by reticular fibers of the periadipocytic baskets and embedment between collagen bundles. Experimental transmission experiments combined with molecular parasite detection in blood fed flies provided evidence that dermal trypanosomes can be acquired from the inoculation site immediately after the initial transmission. High resolution thermographic imaging also revealed that intradermal parasite expansion induces elevated skin surface temperatures. Collectively, the dermis represents a delivery site of the highly infective metacyclic trypanosomes from which the host is systemically colonized and where a proliferative subpopulation remains that is physically constrained by intricate interactions with adipocytes and collagen fibrous structures.


Assuntos
Derme/parasitologia , Interações Hospedeiro-Parasita/fisiologia , Insetos Vetores/parasitologia , Trypanosoma brucei brucei , Moscas Tsé-Tsé/parasitologia , Animais , Mordeduras e Picadas , Modelos Animais de Doenças , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Reação em Cadeia da Polimerase
11.
Kidney Int ; 92(1): 125-139, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28302370

RESUMO

The microvillus brush border on the renal proximal tubule epithelium allows the controlled reabsorption of solutes that are filtered through the glomerulus and thus participates in general body homeostasis. Here, using the lipid 5-phosphatase Ship2 global knockout mice, proximal tubule-specific Ship2 knockout mice, and a proximal tubule cell model in which SHIP2 is inactivated, we show that SHIP2 is a negative regulator of microvilli formation, thereby controlling solute reabsorption by the proximal tubule. We found increased PtdIns(4,5)P2 substrate and decreased PtdIns4P product when SHIP2 was inactivated, associated with hyperactivated ezrin/radixin/moesin proteins and increased Rho-GTP. Thus, inactivation of SHIP2 leads to increased microvilli formation and solute reabsorption by the renal proximal tubule. This may represent an innovative therapeutic target for renal Fanconi syndrome characterized by decreased reabsorption of solutes by this nephron segment.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Células Epiteliais/enzimologia , Túbulos Renais Proximais/enzimologia , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Animais , Glicemia/metabolismo , Células Epiteliais/ultraestrutura , Feminino , Genótipo , Glicosúria/metabolismo , Túbulos Renais Proximais/ultraestrutura , Células LLC-PK1 , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microvilosidades/enzimologia , Complexos Multiproteicos , Fenótipo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/deficiência , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Reabsorção Renal , Suínos , Fatores de Tempo , Proteínas rho de Ligação ao GTP/metabolismo
12.
Eur J Immunol ; 46(8): 1854-66, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27198486

RESUMO

Apolipoproteins L (ApoLs) are Bcl-2-like proteins expressed under inflammatory conditions in myeloid and endothelial cells. We found that Toll-like receptor (TLR) stimuli, particularly the viral mimetic polyinosinic:polycytidylic acid (poly(I:C)), specifically induce ApoLs7/11 subfamilies in murine CD8α(+)  dendritic cells (DCs). This induction requires the TLR3/TRIF (where TRIF is TIR domain containing adapter-inducing interferon ß) signaling pathway and is dependent on IFN-ß in all ApoLs subfamilies except for ApoL7c. Poly(I:C) treatment of DCs is also associated with induction of both cell death and autophagy. ApoLs expression is related to promotion of DC death by poly(I:C), as ApoLs7/11 knockdown increases DC survival and ApoLs7 are associated with the anti-apoptotic protein Bcl-xL (where Bcl-xL is B-cell lymphoma extra large). Similarly, in human monocyte-derived DCs poly(I:C) induces both cell death and the expression of ApoLs, principally ApoL3. Finally, the BH3-like peptide of ApoLs appears to be involved in the DC death-promoting activity. We would like to propose that ApoLs are involved in cell death linked to activation of DCs by viral stimuli.


Assuntos
Apolipoproteínas/imunologia , Apoptose , Células Dendríticas/citologia , Transdução de Sinais , Receptor 3 Toll-Like/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Antígenos CD8/metabolismo , Linhagem Celular , Células Cultivadas , Células Dendríticas/metabolismo , Humanos , Interferon beta/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Poli I-C/farmacologia , Isoformas de Proteínas/imunologia , Proteína bcl-X/metabolismo
13.
Haematologica ; 102(9): 1594-1604, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28596280

RESUMO

Interactions between chronic lymphocytic leukemia (CLL) B cells and the bone marrow (BM) microenvironment play a major function in the physiopathology of CLL. Extracellular vesicles (EVs), which are composed of exosomes and microparticles, play an important role in cell communication. However, little is known about their role in CLL / microenvironment interactions. In the present study, EVs purified by ultracentrifugation from BM mesenchymal stromal cell (BM-MSC) cultures were added to CLL B cells. After their integration into CLL B cells, we observed a decrease of leukemic cell spontaneous apoptosis and an increase in their chemoresistance to several drugs, including fludarabine, ibrutinib, idelalisib and venetoclax after 24 hours. Spontaneous (P=0.0078) and stromal cell-derived factor 1α -induced migration capacities of CLL B cells were also enhanced (P=0.0020). A microarray study highlighted 805 differentially expressed genes between leukemic cells cultured with or without EVs. Of these, genes involved in the B-cell receptor pathway such as CCL3/4, EGR1/2/3, and MYC were increased. Interestingly, this signature presents important overlaps with other microenvironment stimuli such as B-cell receptor stimulation, CLL/nurse-like cells co-culture or those provided by a lymph node microenvironment. Finally, we showed that EVs from MSCs of leukemic patients also rescue leukemic cells from spontaneous or drug-induced apoptosis. However, they induce a higher migration and also a stronger gene modification compared to EVs of healthy MSCs. In conclusion, we show that EVs play a crucial role in CLL B cells/BM microenvironment communication.


Assuntos
Células da Medula Óssea/metabolismo , Movimento Celular , Vesículas Extracelulares/metabolismo , Regulação Leucêmica da Expressão Gênica , Leucemia Linfocítica Crônica de Células B/metabolismo , Células da Medula Óssea/patologia , Técnicas de Cocultura , Vesículas Extracelulares/patologia , Feminino , Humanos , Leucemia Linfocítica Crônica de Células B/patologia , Masculino , Células Estromais/metabolismo , Células Estromais/patologia , Células Tumorais Cultivadas
14.
J Am Soc Nephrol ; 27(4): 1135-44, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26271513

RESUMO

Signaling from the primary cilium regulates kidney tubule development and cyst formation. However, the mechanism controlling targeting of ciliary components necessary for cilium morphogenesis and signaling is largely unknown. Here, we studied the function of class II phosphoinositide 3-kinase-C2α (PI3K-C2α) in renal tubule-derived inner medullary collecting duct 3 cells and show that PI3K-C2α resides at the recycling endosome compartment in proximity to the primary cilium base. In this subcellular location, PI3K-C2α controlled the activation of Rab8, a key mediator of cargo protein targeting to the primary cilium. Consistently, partial reduction of PI3K-C2α was sufficient to impair elongation of the cilium and the ciliary transport of polycystin-2, as well as to alter proliferation signals linked to polycystin activity. In agreement, heterozygous deletion of PI3K-C2α in mice induced cilium elongation defects in kidney tubules and predisposed animals to cyst development, either in genetic models of polycystin-1/2 reduction or in response to ischemia/reperfusion-induced renal damage. These results indicate that PI3K-C2α is required for the transport of ciliary components such as polycystin-2, and partial loss of this enzyme is sufficient to exacerbate the pathogenesis of cystic kidney disease.


Assuntos
Cílios/fisiologia , Classe II de Fosfatidilinositol 3-Quinases/fisiologia , Doenças Renais Císticas , Canais de Cátion TRPP/fisiologia , Animais , Doenças Renais Císticas/etiologia , Masculino , Camundongos , Transdução de Sinais
15.
Mol Plant Microbe Interact ; 29(7): 560-72, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27135257

RESUMO

Plant root-knot nematode (RKN) interaction studies are performed on several host plant models. Though RKN interact with trees, no perennial woody model has been explored so far. Here, we show that poplar (Populus tremula × P. alba) grown in vitro is susceptible to Meloidogyne incognita, allowing this nematode to penetrate, to induce feeding sites, and to successfully complete its life cycle. Quantitative reverse transcription-polymerase chain reaction analysis was performed to study changes in poplar gene expression in galls compared with noninfected roots. Three genes (expansin A, histone 3.1, and asparagine synthase), selected as gall development marker genes, followed, during poplar-nematode interaction, a similar expression pattern to what was described for other plant hosts. Downregulation of four genes implicated in the monolignol biosynthesis pathway was evidenced in galls, suggesting a shift in the phenolic profile within galls developed on poplar roots. Raman microspectroscopy demonstrated that cell walls of giant cells were not lignified but mainly composed of pectin and cellulose. The data presented here suggest that RKN exercise conserved strategies to reproduce and to invade perennial plant species and that poplar is a suitable model host to study specific traits of tree-nematode interactions.


Assuntos
Interações Hospedeiro-Patógeno , Doenças das Plantas/parasitologia , Populus/parasitologia , Tylenchoidea/fisiologia , Animais , Folhas de Planta/parasitologia , Raízes de Plantas/parasitologia , Populus/citologia , Tylenchoidea/citologia , Xilema/parasitologia
16.
Hum Mol Genet ; 23(14): 3830-42, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24569166

RESUMO

Ectrodactyly, or Split-Hand/Foot Malformation (SHFM), is a congenital condition characterized by the loss of central rays of hands and feet. The p63 and the DLX5;DLX6 transcription factors, expressed in the embryonic limb buds and ectoderm, are disease genes for these conditions. Mutations of p63 also cause the ectodermal dysplasia-ectrodactyly-cleft lip/palate (EEC) syndrome, comprising SHFM. Ectrodactyly is linked to defects of the apical ectodermal ridge (AER) of the developing limb buds. FGF8 is the key signaling molecule in this process, able to direct proximo-distal growth and patterning of the skeletal primordial of the limbs. In the limb buds of both p63 and Dlx5;Dlx6 murine models of SHFM, the AER is poorly stratified and FGF8 expression is severely reduced. We show here that the FGF8 locus is a downstream target of DLX5 and that FGF8 counteracts Pin1-ΔNp63α interaction. In vivo, lack of Pin1 leads to accumulation of the p63 protein in the embryonic limbs and ectoderm. We show also that ΔNp63α protein stability is negatively regulated by the interaction with the prolyl-isomerase Pin1, via proteasome-mediated degradation; p63 mutant proteins associated with SHFM or EEC syndromes are resistant to Pin1 action. Thus, DLX5, p63, Pin1 and FGF8 participate to the same time- and location-restricted regulatory loop essential for AER stratification, hence for normal patterning and skeletal morphogenesis of the limb buds. These results shed new light on the molecular mechanisms at the basis of the SHFM and EEC limb malformations.


Assuntos
Ectoderma/embriologia , Fator 8 de Crescimento de Fibroblasto/metabolismo , Proteínas de Homeodomínio/metabolismo , Deformidades Congênitas dos Membros/metabolismo , Peptidilprolil Isomerase/metabolismo , Fosfoproteínas/metabolismo , Transativadores/metabolismo , Animais , Padronização Corporal , Linhagem Celular , Modelos Animais de Doenças , Ectoderma/metabolismo , Técnicas de Inativação de Genes , Proteínas de Homeodomínio/genética , Humanos , Botões de Extremidades/embriologia , Deformidades Congênitas dos Membros/patologia , Camundongos , Peptidilprolil Isomerase de Interação com NIMA , Fosfoproteínas/genética , Estabilidade Proteica , Transativadores/genética
17.
Mol Microbiol ; 94(3): 625-36, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25256834

RESUMO

Normal human serum (NHS) confers human resistance to infection by the parasite Trypanosoma brucei owing to the trypanolytic activity of apolipoprotein L1 (APOL1), present in two serum complexes termed Trypanolytic Factors (TLF-1 and -2). In order to identify parasite components involved in the intracellular trafficking and activity of TLFs, an inducible RNA interference (RNAi) genomic DNA library constructed in bloodstream form T. brucei was subjected to RNAi induction and selection for resistant parasites under NHS conditions favouring either TLF-1 or TLF-2 uptake. While TLF-1 conditions readily selected the haptoglobin-haemoglobin (HP-HB) surface receptor TbHpHbR as expected, given its known ability to bind TLF-1, under TLF-2 conditions no specific receptor for TLF-2 was identified. Instead, the screen allowed the identification of five distinct factors expected to be involved in the assembly of the vacuolar proton pump V-ATPase and consecutive endosomal acidification. These data confirm that lowering the pH during endocytosis is required for APOL1 toxic activity.


Assuntos
Apolipoproteínas/metabolismo , Citotoxinas/metabolismo , Lipoproteínas HDL/metabolismo , Soro/metabolismo , Trypanosoma brucei brucei/efeitos dos fármacos , Apolipoproteína L1 , Endocitose , Concentração de Íons de Hidrogênio , Proteínas de Protozoários/análise , Proteínas de Protozoários/genética , Receptores de Superfície Celular/análise , Receptores de Superfície Celular/genética , Trypanosoma brucei brucei/genética
18.
Infect Immun ; 82(9): 3927-38, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25001604

RESUMO

Brucella spp. are facultative intracellular Gram-negative coccobacilli responsible for brucellosis, a worldwide zoonosis. We observed that Brucella melitensis is able to persist for several weeks in the blood of intraperitoneally infected mice and that transferred blood at any time point tested is able to induce infection in naive recipient mice. Bacterial persistence in the blood is dramatically impaired by specific antibodies induced following Brucella vaccination. In contrast to Bartonella, the type IV secretion system and flagellar expression are not critically required for the persistence of Brucella in blood. ImageStream analysis of blood cells showed that following a brief extracellular phase, Brucella is associated mainly with the erythrocytes. Examination by confocal microscopy and transmission electron microscopy formally demonstrated that B. melitensis is able to invade erythrocytes in vivo. The bacteria do not seem to multiply in erythrocytes and are found free in the cytoplasm. Our results open up new areas for investigation and should serve in the development of novel strategies for the treatment or prophylaxis of brucellosis. Invasion of erythrocytes could potentially protect the bacterial cells from the host's immune response and hamper antibiotic treatment and suggests possible Brucella transmission by bloodsucking insects in nature.


Assuntos
Brucella melitensis/imunologia , Eritrócitos/imunologia , Animais , Sistemas de Secreção Bacterianos/imunologia , Vacina contra Brucelose/imunologia , Brucelose/imunologia , Brucelose/microbiologia , Eritrócitos/microbiologia , Flagelos/imunologia , Flagelos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL
19.
Eukaryot Cell ; 12(2): 168-81, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23104568

RESUMO

FKBP12 proteins are able to inhibit TOR kinases or calcineurin phosphatases upon binding of rapamycin or FK506 drugs, respectively. The Trypanosoma brucei FKBP12 homologue (TbFKBP12) was found to be a cytoskeleton-associated protein with specific localization in the flagellar pocket area of the bloodstream form. In the insect procyclic form, RNA interference-mediated knockdown of TbFKBP12 affected motility. In bloodstream cells, depletion of TbFKBP12 affected cytokinesis and cytoskeleton architecture. These last effects were associated with the presence of internal translucent cavities limited by an inside-out configuration of the normal cell surface, with a luminal variant surface glycoprotein coat lined up by microtubules. These cavities, which recreated the streamlined shape of the normal trypanosome cytoskeleton, might represent unsuccessful attempts for cell abscission. We propose that TbFKBP12 differentially affects stage-specific processes through association with the cytoskeleton.


Assuntos
Citocinese , Proteínas de Protozoários/fisiologia , Proteína 1A de Ligação a Tacrolimo/metabolismo , Trypanosoma brucei brucei/enzimologia , Movimento Celular , DNA de Cinetoplasto/metabolismo , DNA de Protozoário/metabolismo , Flagelos/metabolismo , Flagelos/ultraestrutura , Técnicas de Silenciamento de Genes , Microtúbulos/metabolismo , Transporte Proteico , Proteínas de Protozoários/genética , RNA Interferente Pequeno/genética , Proteína 1A de Ligação a Tacrolimo/genética , Trypanosoma brucei brucei/crescimento & desenvolvimento , Trypanosoma brucei brucei/ultraestrutura
20.
RSC Chem Biol ; 5(4): 344-359, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38576718

RESUMO

Ruthenium(ii) complexes are attracting significant research attention as a promising class of photosensitizers (PSs) in photodynamic therapy (PDT). Having previously reported the synthesis of two novel Ru(ii)-polypyridyl-1,8-naphthalimide Tröger's base compounds 1 and 2 with interesting photophysical properties, where the emission from either the Ru(ii) polypyridyl centres or the naphthalimide moieties could be used to monitor binding to nucleic acids, we sought to use these compounds to investigate further and in more detail their biological profiling, which included unravelling their mechanism of cellular uptake, cellular trafficking and cellular responses to photoexcitation. Here we demonstrate that these compounds undergo rapid time dependent uptake in HeLa cells that involved energy dependent, caveolae and lipid raft-dependent mediated endocytosis, as demonstrated by confocal imaging, and transmission and scanning electron microscopy. Following endocytosis, both compounds were shown to localise to mostly lysosomal and Golgi apparatus compartments with some accumulation in mitochondria but no localisation was found to the nucleus. Upon photoactivation, the compounds increased ROS production and induced ROS-dependent apoptotic cell death. The photo-activated compounds subsequently induced DNA damage and altered tubulin, but not actin structures, which was likely to be an indirect effect of ROS production and induced apoptosis. Furthermore, by changing the concentration of the compounds or the laser used to illuminate the cells, the mechanism of cell death could be changed from apoptosis to necrosis. This is the first detailed biological study of Ru(ii)-polypyridyl Tröger's bases and clearly suggests caveolae-dependent endocytosis is responsible for cell uptake - this may also explain the lack of nuclear uptake for these compounds and similar results observed for other Ru(ii)-polypyridyl complexes. These conjugates are potential candidates for further development as PDT agents and may also be useful in mechanistic studies on cell uptake and trafficking.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA