RESUMO
The interruption of rehabilitation activities caused by the COVID-19 lockdown has significant health negative consequences for the population with physical disabilities. Thus, measuring the range of motion (ROM) using remotely taken photographs, which are then sent to specialists for formal assessment, has been recommended. Currently, low-cost Kinect motion capture sensors with a natural user interface are the most feasible implementations for upper limb motion analysis. An active range of motion (AROM) measuring system based on a Kinect v2 sensor for upper limb motion analysis using Fugl-Meyer Assessment (FMA) scoring is described in this paper. Two test groups of children, each having eighteen participants, were analyzed in the experimental stage, where upper limbs' AROM and motor performance were assessed using FMA. Participants in the control group (mean age of 7.83 ± 2.54 years) had no cognitive impairment or upper limb musculoskeletal problems. The study test group comprised children aged 8.28 ± 2.32 years with spastic hemiparesis. A total of 30 samples of elbow flexion and 30 samples of shoulder abduction of both limbs for each participant were analyzed using the Kinect v2 sensor at 30 Hz. In both upper limbs, no significant differences (p < 0.05) in the measured angles and FMA assessments were observed between those obtained using the described Kinect v2-based system and those obtained directly using a universal goniometer. The measurement error achieved by the proposed system was less than ±1° compared to the specialist's measurements. According to the obtained results, the developed measuring system is a good alternative and an effective tool for FMA assessment of AROM and motor performance of upper limbs, while avoiding direct contact in both healthy children and children with spastic hemiparesis.
Assuntos
COVID-19 , COVID-19/diagnóstico , Criança , Pré-Escolar , Controle de Doenças Transmissíveis , Hemiplegia , Humanos , Amplitude de Movimento Articular , Extremidade SuperiorRESUMO
Quantifying the quality of upper limb movements is fundamental to the therapeutic process of patients with cerebral palsy (CP). Several clinical methods are currently available to assess the upper limb range of motion (ROM) in children with CP. This paper focuses on identifying and describing available techniques for the quantitative assessment of the upper limb active range of motion (AROM) and kinematics in children with CP. Following the screening and exclusion of articles that did not meet the selection criteria, we analyzed 14 studies involving objective upper extremity assessments of the AROM and kinematics using optoelectronic devices, wearable sensors, and low-cost Kinect sensors in children with CP aged 4-18 years. An increase in the motor function of the upper extremity and an improvement in most of the daily tasks reviewed were reported. In the population of this study, the potential of wearable sensors and the Kinect sensor natural user interface as complementary devices for the quantitative evaluation of the upper extremity was evident. The Kinect sensor is a clinical assessment tool with a unique markerless motion capture system. Few authors had described the kinematic models and algorithms used to estimate their kinematic analysis in detail. However, the kinematic models in these studies varied from 4 to 10 segments. In addition, few authors had followed the joint assessment recommendations proposed by the International Society of Biomechanics (ISB). This review showed that three-dimensional analysis systems were used primarily for monitoring and evaluating spatiotemporal variables and kinematic parameters of upper limb movements. The results indicated that optoelectronic devices were the most commonly used systems. The joint assessment recommendations proposed by the ISB should be used because they are approved standards for human kinematic assessments. This review was registered in the PROSPERO database (CRD42021257211).
Assuntos
Paralisia Cerebral , Fenômenos Biomecânicos , Paralisia Cerebral/diagnóstico , Criança , Humanos , Movimento , Amplitude de Movimento Articular , Extremidade SuperiorRESUMO
BACKGROUND: The performance of Computer Aided Diagnosis Systems for early melanoma detection relies mainly on quantitative evaluation of the geometric features corresponding to skin lesions. In these systems, diagnosis is carried out by analyzing four geometric characteristics: asymmetry (A), border (B), color (C) and dimension (D). The main objective of this study is to establish an algorithm for the measurement of asymmetry in biological entities. METHODS: Binary digital images corresponding to lesions are divided into 8 segments from their centroid. For each segment, the discrete compactness value is calculated using Normalized E-Factor (NEF). The asymmetry value is obtained from the sum of the square difference of each NEF value and corresponding value of its opposite by the vertex. Two public skin cancer databases were used. 1) Lee's database with 40 digital regions evaluated by fourteen dermatologists. 2) The PH2 database which consists of 200 images in an 8-bit RGB format. This database provides a pre-classification of asymmetry carried out by experts, and it also indicates if the lesion is a melanoma. RESULTS: The measure was applied using two skin lesion image databases. 1) In Lee's database, Spearman test provided a value of 0.82 between diagnosis of dermatologists and asymmetry values. For the 12 binary images most likely to be melanoma, the correlation between the measurement and dermatologists was 0.98. 2) In the PH2 database a label is provided for each binary image where the type of asymmetry is indicated. Class 0-1 corresponds to symmetry and one axis of symmetry shapes, the completely asymmetrical were assigned to Class 2, the values of sensitivity and specificity were 59.62 and 85.8% respectively between the asymmetry measured by a group of dermatologists and the proposed algorithm. CONCLUSIONS: Simple image digital features such as compactness can be used to quantify the asymmetry of a skin lesion using its digital binary image representation. This measure is stable taking into account translations, rotations, scale changes and can be applied to non-convex regions, including areas with holes.
Assuntos
Algoritmos , Diagnóstico por Computador/métodos , Interpretação de Imagem Assistida por Computador/métodos , Melanoma/diagnóstico , Dermatopatias/diagnóstico , HumanosRESUMO
Power electronic (PE) technology became considered a mature technology over the last century [...].
RESUMO
In power electronics, magnetic components are fundamental, and, unfortunately, represent one of the greatest challenges for designers because they are some of the components that lead the opposition to miniaturization and the main source of losses (both electrical and thermal). The use of ferromagnetic materials as substitutes for ferrite, in the core of magnetic components, has been proposed as a solution to this problem, and with them, a new perspective and methodology in the calculation of power losses open the way to new design proposals and challenges to overcome. Achieving a core losses model that combines all the parameters (electric, magnetic, thermal) needed in power electronic applications is a challenge. The main objective of this work is to position the reader in state-of-the-art for core losses models. This last provides, in one source, tools and techniques to develop magnetic solutions towards miniaturization applications. Details about new proposals, materials used, design steps, software tools, and miniaturization examples are provided.
RESUMO
In the last years, low pressure ozone UVC mercury germicidal lamps have been widely used to decontaminate air, surfaces, and water. This technology is mature, and it has been widely used during the pandemic as a measure against SARS-CoV-2, the coronavirus that causes COVID-19; because the exposure of this virus to the wavelength wave of 254 nm has been proven to be an effective way to eliminate it. However, the Minamata Convention in 2013 decided to limit mercury lamps by 2020; therefore, the development of new technology devices based on UVC-LEDs (short-wave ultraviolet, light-emitting diodes) are receiving a lot of attention. Today, this technology is commercially available from 265 to 300 nm peak wavelengths, and recently up to 254 nm. Notwithstanding, due to the characteristics of these LEDs, arrangements with a precisely dosed power supply are regularly required to provide effective decontamination. Thus, this article reports the design and implementation of a power electronic converter for an array of 254 nm UVC-LEDs, which can be used to decontaminate from SARS-CoV-2 in a safe way.