Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Biomacromolecules ; 25(8): 5233-5250, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39018332

RESUMO

A promising trend in tissue engineering is using biomaterials to improve the control of drug concentration in targeted tissue. These vehicular systems are of specific interest when the required treatment time window is higher than the stability of therapeutic molecules in the body. Herein, the capacity of silk fibroin hydrogels to release different molecules and drugs in a sustained manner was evaluated. We found that a biomaterial format, obtained by an entirely aqueous-based process, could release molecules of variable molecular weight and charge with a preferential delivery of negatively charged molecules. Although the theoretical modeling suggested that drug delivery was more likely to be driven by Fickian diffusion, the external media had a considerable influence on the release, with lipophilic organic solvents such as acetonitrile-methanol (ACN-MeOH) intensifying the release of hydrophobic molecules. Second, we found that silk fibroin could be used as a vehicular system to treat a variety of brain disorders as this biomaterial sustained the release of different factors with neurotrophic (brain-derived neurotrophic factor) (BDNF), chemoattractant (C-X-C motif chemokine 12) (CXCL12), anti-inflammatory (TGF-ß-1), and angiogenic (VEGF) capacities. Finally, we demonstrated that this biomaterial hydrogel could release cholesteronitrone ISQ201, a nitrone with antioxidant capacity, showing neuroprotective activity in an in vitro model of ischemia-reoxygenation. Given the slow degradation rate shown by silk fibroin in many biological tissues, including the nervous system, our study expands the restricted list of drug delivery-based biomaterial systems with therapeutic capacity for both short- and especially long-term treatment windows and has merit for use with brain pathologies.


Assuntos
Sistemas de Liberação de Medicamentos , Fibroínas , Hidrogéis , Hidrogéis/química , Hidrogéis/farmacologia , Fibroínas/química , Animais , Sistemas de Liberação de Medicamentos/métodos , Materiais Biocompatíveis/química , Humanos , Ratos , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/administração & dosagem
2.
J Exp Zool B Mol Dev Evol ; 338(4): 241-253, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34981640

RESUMO

The expression of spidroins in the major ampullate, minor ampullate, flagelliform, and tubuliform silk glands of Trichonephila clavipes spiders was analyzed using proteomics analysis techniques. Spidroin peptides were identified and assigned to different gene products based on sequence concurrence when compared with the whole genome of the spider. It was found that only a relatively low proportion of the spidroin genes are expressed as proteins in any of the studied glands. In addition, the expression of spidroin genes in different glands presents a wide range of patterns, with some spidroins being found in a single gland exclusively, while others appear in the content of several glands. The combination of precise genomics, proteomics, microstructural, and mechanical data provides new insights both on the design principles of these materials and how these principles might be translated for the production of high-performance bioinspired artificial fibers.


Assuntos
Fibroínas , Aranhas , Animais , Fibroínas/genética , Fibroínas/metabolismo , Genoma , Seda/química , Seda/genética , Seda/metabolismo , Aranhas/genética , Aranhas/metabolismo
3.
Soft Matter ; 18(26): 4973-4982, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35748816

RESUMO

Silk gut fibers were produced from the silkworm Samia cynthia ricini silk glands by the usual procedure of immersion in a mildly acidic solution and subsequent stretching. The morphology of the silk guts was assessed by scanning electron microscopy, and their microstructure was assessed by infrared spectroscopy and X-ray diffraction. It was found that both naturally spun and Samia silk guts share a common semicrystalline microstructure. The mechanical characterization of the silk guts revealed that these fibers show an elastomeric behavior when tested in water, and exhibit a genuine ground state to which the fiber may revert independently of its previous loading history. In spite of its large cross-sectional area compared with naturally spun silk fibers, Samia silk guts show values of work to fracture up to 160 MJ m-3, much larger than those of most of their natural counterparts, and establish a new record value for this parameter in silk guts.


Assuntos
Bombyx , Seda , Animais , Seda/química , Espectrofotometria Infravermelho , Difração de Raios X
4.
Int J Mol Sci ; 23(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35409245

RESUMO

High-performance fibroin fibres are ideal candidates for the manufacture of scaffolds with applications in tissue engineering due to the excellent mechanical properties and optimal biocompatibility of this protein. In this work, the manufacture of high-strength fibres made from the silk glands of Samia cynthia ricini is explored. The glands were subjected to soaking in aqueous dissolutions of acetic acid and stretched to manufacture the fibres. The materials produced were widely characterized, in terms of morphology, mechanical properties, crystallinity and content of secondary structures, comparing them with those produced by the standard procedure published for Bombyx mori. In addition, mechanical properties and biocompatibility of a braided scaffold produced from these fibres was evaluated. The results obtained show that the fibres from B. mori present a higher degree of crystallinity than those from S. c. ricini, which is reflected in higher values of elastic modulus and lower values of strain at break. Moreover, a decrease in the elongation values of the fibres from S. c. ricini was observed as the concentration of acetic acid was increased during the manufacture. On the other hand, the study of the braided scaffolds showed higher values of tensile strength and strain at break in the case of S. c. ricini materials and similar values of elastic modulus, compared to those of B. mori, displaying both scaffolds optimal biocompatibility using a fibroblast cell line.


Assuntos
Bombyx , Fibroínas , Manduca , Animais , Bombyx/metabolismo , Fibroínas/química , Manduca/metabolismo , Estrutura Secundária de Proteína , Seda/química , Engenharia Tecidual
5.
Molecules ; 28(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36615422

RESUMO

Single molecule interactions between biotin and streptavidin were characterized with functionalized DeepTipTM probes and used as a model system to develop a comprehensive methodology for the high-yield identification and analysis of single molecular events. The procedure comprises the covalent binding of the target molecule to a surface and of the sensing molecule to the DeepTipTM probe, so that the interaction between both chemical species can be characterized by obtaining force-displacement curves in an atomic force microscope. It is shown that molecular resolution is consistently attained with a percentage of successful events higher than 90% of the total number of recorded curves, and a very low level of unspecific interactions. The combination of both features is a clear indication of the robustness and versatility of the proposed methodology.


Assuntos
Biotina , Modelos Biológicos , Microscopia de Força Atômica/métodos , Estreptavidina/química , Biotina/química
6.
Molecules ; 27(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35807389

RESUMO

High-performance regenerated silkworm (Bombyx mori) silk fibers can be produced efficiently through the straining flow spinning (SFS) technique. In addition to an enhanced biocompatibility that results from the removal of contaminants during the processing of the material, regenerated silk fibers may be functionalized conveniently by using a range of different strategies. In this work, the possibility of implementing various functionalization techniques is explored, including the production of fluorescent fibers that may be tracked when implanted, the combination of the fibers with enzymes to yield fibers with catalytic properties, and the functionalization of the fibers with cell-adhesion motifs to modulate the adherence of different cell lineages to the material. When considered globally, all these techniques are a strong indication not only of the high versatility offered by the functionalization of regenerated fibers in terms of the different chemistries that can be employed, but also on the wide range of applications that can be covered with these functionalized fibers.


Assuntos
Bombyx , Fibroínas , Animais , Adesão Celular , Seda
7.
Molecules ; 26(6)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806736

RESUMO

The prominence of spider silk as a hallmark in biomimetics relies not only on its unrivalled mechanical properties, but also on how these properties are the result of a set of original design principles. In this sense, the study of spider silk summarizes most of the main topics relevant to the field and, consequently, offers a nice example on how these topics could be considered in other biomimetic systems. This review is intended to present a selection of some of the essential design principles that underlie the singular microstructure of major ampullate gland silk, as well as to show how the interplay between them leads to the outstanding tensile behavior of spider silk. Following this rationale, the mechanical behavior of the material is analyzed in detail and connected with its main microstructural features, specifically with those derived from the semicrystalline organization of the fibers. Establishing the relationship between mechanical properties and microstructure in spider silk not only offers a vivid image of the paths explored by nature in the search for high performance materials, but is also a valuable guide for the development of new artificial fibers inspired in their natural counterparts.


Assuntos
Materiais Biomiméticos/química , Seda/química , Aranhas , Estresse Mecânico , Resistência à Tração , Animais
8.
J Evol Biol ; 33(7): 979-989, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32282960

RESUMO

Current avian migration patterns in temperate regions have been developed during the glacial retreat and subsequent colonization of the ice-free areas during the Holocene. This process resulted in a geographic gradient of greater seasonality as latitude increased that favoured migration-related morphological and physiological (co)adaptations. Most evidence of avian morphological adaptations to migration comes from the analysis of variation in the length and shape of the wings, but the existence of intra-feather structural adjustments has been greatly overlooked despite their potential to be under natural selection. To shed some light on this question, we used data from European robins Erithacus rubecula overwintering in Campo de Gibraltar (Southern Iberia), where sedentary robins coexist during winter with conspecifics showing a broad range of breeding origins and, hence, migration distances. We explicitly explored how wing length and shape, as well as several functional (bending stiffness), developmental (feather growth rate) and structural (size and complexity of feather components) characteristics of flight feathers, varied in relation to migration distance, which was estimated from the hydrogen stable isotope ratios of the summer-produced tail feathers. Our results revealed that migration distance not only favoured longer and more concave wings, but also promoted primaries with a thicker dorsoventral rachis and shorter barb lengths, which, in turn, conferred more bending stiffness to these feathers. We suggest that these intra-feather structural adjustments could be an additional, largely unnoticed, adaptation within the avian migratory syndrome that might have the potential to evolve relatively quickly to facilitate the occupation of seasonal environments.


Assuntos
Adaptação Biológica , Migração Animal , Plumas/anatomia & histologia , Aves Canoras/anatomia & histologia , Asas de Animais/anatomia & histologia , Animais , Evolução Biológica , Feminino , Voo Animal , Masculino
9.
Biomacromolecules ; 21(6): 2116-2124, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32223220

RESUMO

The production of large quantities of artificial spider silk fibers that match the mechanical properties of the native material has turned out to be challenging. Recent advancements in the field make biomimetic spinning approaches an attractive way forward since they allow the spider silk proteins to assemble into the secondary, tertiary, and quaternary structures that are characteristic of the native silk fiber. Straining flow spinning (SFS) is a newly developed and versatile method that allows production under a wide range of processing conditions. Here, we use a recombinant spider silk protein that shows unprecedented water solubility and that is capable of native-like assembly, and we spin it into fibers by the SFS technique. We show that fibers may be spun using different hydrodynamical and chemical conditions and conclude that these spinning conditions affect fiber mechanics. In particular, it was found that the addition of acetonitrile and polyethylene glycol to the collection bath results in fibers with increased ß-sheet content and improved mechanical properties.


Assuntos
Fibroínas , Aranhas , Animais , Biomimética , Proteínas Recombinantes/genética , Seda , Estresse Mecânico , Relação Estrutura-Atividade
10.
Soft Matter ; 15(14): 2960-2970, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30901019

RESUMO

Tubuliform silk glands were dissected from Nephila clavipes spiders, and silk gut fibers were produced by immersing the glands in a mild acid solution and subsequent stretching. The tensile properties of the as produced fibers were obtained through tensile tests, and the stress-strain curves were compared with those of naturally spun tubuliform silk fibers. The influence on the mechanical properties of the fibers after immersion in water and drying was also discerned. The microstructure of the silk guts was obtained by X-ray diffraction (XRD) and infrared spectroscopy (FTIR). It was found that the stress-strain curves of the stretched tubuliform silk guts concur with those of their natural counterparts (tubuliform silk fibers).


Assuntos
Seda/química , Aranhas/química , Animais , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA