Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Mol Pharmacol ; 99(2): 133-146, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33288547

RESUMO

Oligodendrocytes (OLs) express functional GABAA receptors (GABAARs) that are activated by GABA released at synaptic contacts with axons or by ambient GABA in extrasynaptic domains. In both instances, the receptors' molecular identity has not been fully defined. Furthermore, data on their structural diversity in different brain regions and information on age-dependent changes in their molecular composition are scant. This lack of knowledge has delayed access to a better understanding of the role of GABAergic signaling between neurons and OLs. Here, we used functional, and pharmacological analyses, as well as gene and protein expression of GABAAR subunits, to explore the subunit combination that could explain the receptor functional profile expressed in OLs from the neonate rat. We found that GABAAR composed of α3ß2γ1 subunits mimicked the characteristics of the endogenous receptor when expressed heterologously in Xenopus laevis oocytes. Either α3 or γ1 subunit silencing by small interfering RNA transfection changed the GABA-response characteristics in oligodendrocyte precursor cells, indicating their participation in the endogenous receptor conformation. Thus, α3 subunit silencing shifted the mean EC50 for GABA from 75.1 to 46.6 µM, whereas γ1 silencing reduced the current amplitude response by 55%. We also observed that ß-carbolines differentially enhance GABA responses in oligodendroglia as compared with those in neurons. These results contribute to defining the molecular and pharmacological properties of GABAARs in OLs. Additionally, the identification of ß-carbolines as selective enhancers of GABAARs in OLs may help to study the role of GABAergic signaling during myelination. SIGNIFICANCE STATEMENT: GABAergic signaling through GABAA receptors (GABAARs) expressed in the oligodendroglial lineage contributes to the myelination control. Determining the molecular identity and the pharmacology of these receptors is essential to define their specific roles in myelination. Using GABAAR subunit expression and silencing, we identified that the GABAAR subunit combination α3ß2γ1 conforms the bulk of GABAARs in oligodendrocytes from rat neonates. Furthermore, we found that these receptors have differential pharmacological properties that allow specific positive modulation by ß-carbolines.


Assuntos
Encéfalo/citologia , Neurônios/citologia , Oligodendroglia/citologia , Receptores de GABA-A/metabolismo , Animais , Animais Recém-Nascidos , Encéfalo/metabolismo , Carbolinas/farmacologia , Células Cultivadas , Feminino , Inativação Gênica , Camundongos , Neurônios/metabolismo , Oligodendroglia/metabolismo , Ratos , Receptores de GABA-A/genética , Xenopus laevis
3.
PLoS Biol ; 14(5): e1002466, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27228556

RESUMO

Phagocytosis is essential to maintain tissue homeostasis in a large number of inflammatory and autoimmune diseases, but its role in the diseased brain is poorly explored. Recent findings suggest that in the adult hippocampal neurogenic niche, where the excess of newborn cells undergo apoptosis in physiological conditions, phagocytosis is efficiently executed by surveillant, ramified microglia. To test whether microglia are efficient phagocytes in the diseased brain as well, we confronted them with a series of apoptotic challenges and discovered a generalized response. When challenged with excitotoxicity in vitro (via the glutamate agonist NMDA) or inflammation in vivo (via systemic administration of bacterial lipopolysaccharides or by omega 3 fatty acid deficient diets), microglia resorted to different strategies to boost their phagocytic efficiency and compensate for the increased number of apoptotic cells, thus maintaining phagocytosis and apoptosis tightly coupled. Unexpectedly, this coupling was chronically lost in a mouse model of mesial temporal lobe epilepsy (MTLE) as well as in hippocampal tissue resected from individuals with MTLE, a major neurological disorder characterized by seizures, excitotoxicity, and inflammation. Importantly, the loss of phagocytosis/apoptosis coupling correlated with the expression of microglial proinflammatory, epileptogenic cytokines, suggesting its contribution to the pathophysiology of epilepsy. The phagocytic blockade resulted from reduced microglial surveillance and apoptotic cell recognition receptor expression and was not directly mediated by signaling through microglial glutamate receptors. Instead, it was related to the disruption of local ATP microgradients caused by the hyperactivity of the hippocampal network, at least in the acute phase of epilepsy. Finally, the uncoupling led to an accumulation of apoptotic newborn cells in the neurogenic niche that was due not to decreased survival but to delayed cell clearance after seizures. These results demonstrate that the efficiency of microglial phagocytosis critically affects the dynamics of apoptosis and urge to routinely assess the microglial phagocytic efficiency in neurodegenerative disorders.


Assuntos
Trifosfato de Adenosina/metabolismo , Epilepsia do Lobo Temporal/fisiopatologia , Microglia/patologia , Neurônios/metabolismo , Fagocitose/fisiologia , Adulto , Animais , Apoptose/fisiologia , Receptor 1 de Quimiocina CX3C , Humanos , Ácido Caínico/toxicidade , Antígenos Comuns de Leucócito/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Monócitos/patologia , Neurônios/patologia , Receptores CCR2/genética , Receptores CCR2/metabolismo , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , Convulsões/induzido quimicamente , Convulsões/fisiopatologia
5.
Neurochem Res ; 42(9): 2443-2455, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28345117

RESUMO

Inwardly rectifying K+ (Kir) channel expression signals at an advanced stage of maturation during oligodendroglial differentiation. Knocking down their expression halts the generation of myelin and produces severe abnormalities in the central nervous system. Kir4.1 is the main subunit involved in the tetrameric structure of Kir channels in glial cells; however, the precise composition of Kir channels expressed in oligodendrocytes (OLs) remains partially unknown, as participation of other subunits has been proposed. Kir channels are sensitive to H+; thus, intracellular acidification produces Kir current inhibition. Since Kir subunits have differential sensitivity to H+, we studied the effect of intracellular acidification on Kir currents expressed in cultured OLs derived from optic nerves of 12-day-old rats. Unexpectedly, Kir currents in OLs (2-4 DIV) did not change within the pH range of 8.0-5.0, as observed when using standard whole-cell voltage-clamp recording or when preserving cytoplasmic components with the perforated patch-clamp technique. In contrast, low pH inhibited astrocyte Kir currents, which was consistent with the involvement of the Kir4.1 subunit. The H+-insensitivity expressed in OL Kir channels was not intrinsic because Kir cloning showed no difference in the sequence reported for the Kir4.1, Kir2.1, or Kir5.1 subunits. Moreover, when Kir channels were heterologously expressed in Xenopus oocytes they behaved as expected in their general properties and sensitivity to H+. It is therefore concluded that Kir channel H+-sensitivity in OLs is modulated through an extrinsic mechanism, probably by association with a modulatory component or by posttranslational modifications.


Assuntos
Oligodendroglia/fisiologia , Nervo Óptico/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Concentração de Íons de Hidrogênio , Potenciais da Membrana/fisiologia , Nervo Óptico/citologia , Ratos , Ratos Sprague-Dawley , Xenopus laevis
6.
Mol Pharmacol ; 89(1): 63-74, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26538574

RESUMO

Myelination requires oligodendrocyte-neuron communication, and both neurotransmitters and contact interactions are essential for this process. Oligodendrocytes are endowed with neurotransmitter receptors whose expression levels and properties may change during myelination. However, only scant information is available about the extent and timing of these changes or how they are regulated by oligodendrocyte-neuron interactions. Here, we used electrophysiology to study the expression of ionotropic GABA, glutamate, and ATP receptors in oligodendrocytes derived from the optic nerve and forebrain cultured either alone or in the presence of dorsal root ganglion neurons. We observed that oligodendrocytes from both regions responded to these transmitters at 1 day in culture. After the first day in culture, however, GABA sensitivity diminished drastically to less than 10%, while that of glutamate and ATP remained constant. In contrast, the GABA response amplitude was sustained and remained stable in oligodendrocytes cocultured with dorsal root ganglion neurons. Immunochemistry and pharmacological properties of the responses indicated that they were mediated by distinctive GABAA receptors and that in coculture with neurons, the oligodendrocytes bearing the receptors were those in direct contact with axons. These results reveal that GABAA receptor regulation in oligodendrocytes is driven by axonal cues and that GABA signaling may play a role in myelination and/or during axon-glia recognition.


Assuntos
Axônios/metabolismo , Comunicação Celular/fisiologia , Neuroglia/metabolismo , Oligodendroglia/metabolismo , Receptores de GABA-A/biossíntese , Animais , Axônios/efeitos dos fármacos , Axônios/ultraestrutura , Comunicação Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Gânglios Espinais/ultraestrutura , Regulação da Expressão Gênica , Neuroglia/efeitos dos fármacos , Neuroglia/ultraestrutura , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/ultraestrutura , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/metabolismo , Prosencéfalo/ultraestrutura , Ratos , Ratos Sprague-Dawley , Ácido gama-Aminobutírico/farmacologia
7.
Glia ; 63(1): 163-76, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25130621

RESUMO

The endocannabinoids 2-araquidonoylglycerol (2-AG) and anandamide (AEA) are bioactive lipids crucially involved in the regulation of brain function in basal and pathological conditions. Blockade of endocannabinoid metabolism has emerged as a promising therapeutic strategy for inflammatory diseases of the central nervous system, including myelin disorders such as multiple sclerosis. Nevertheless, the biological actions of endocannabinoid degradation inhibitors in oligodendrocytes and white matter tracts are still ill defined. Here we show that the selective monoacylglycerol lipase (MAGL) inhibitor JZL184 suppressed cell death by mild activation of AMPA receptors in oligodendrocytes in vitro, an effect that was mimicked by MAGL substrate 2-AG and by the second major endocannabinoid AEA, in a concentration-dependent manner, whereas inhibition of the AEA metabolizing enzyme fatty acid amide hydrolase with URB597 was devoid of effect. Pharmacological experiments suggested that oligodendrocyte protection from excitotoxicity resulting from MAGL blockade involved the activation of cannabinoid CB1 receptors and the reduction of AMPA-induced cytosolic calcium overload, mitochondrial membrane depolarization, and production of reactive oxygen species. Administration of JZL184 under a therapeutic regimen decreased clinical severity, prevented demyelination, and reduced inflammation in chronic experimental autoimmune encephalomyelitis. Furthermore, MAGL inactivation robustly preserved myelin integrity and suppressed microglial activation in the cuprizone-induced model of T-cell-independent demyelination. These findings suggest that MAGL blockade may be a useful strategy for the treatment of immune-dependent and -independent damage to the white matter.


Assuntos
Benzodioxóis/farmacologia , Doenças Desmielinizantes/prevenção & controle , Monoacilglicerol Lipases/antagonistas & inibidores , Oligodendroglia/metabolismo , Piperidinas/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Amidoidrolases/metabolismo , Animais , Benzamidas , Moduladores de Receptores de Canabinoides/metabolismo , Carbamatos , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Ratos Sprague-Dawley
8.
Cell Mol Neurobiol ; 35(1): 1-6, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25096398

RESUMO

Adenosine 5'-triphosphate (ATP) is released as a genuine co-transmitter, or as a principal purinergic neurotransmitter, in an exocytotic and non-exocytotic manner. It activates ionotropic (P2X) and metabotropic (P2Y) receptors which mediate a plethora of functions in the brain. In particular, P2X7 receptor (P2X7R) are expressed in all brain cells and its activation can form a large pore allowing the passage of organic cations, the leakage of metabolites of up to 900 Da and the release of ATP itself. In turn, pannexins (Panx) are a family of proteins forming hemichannels that can release ATP. In this review, we summarize the progress in the understanding of the mechanisms of ATP release both in physiological and pathophysiological stages. We also provide data suggesting that P2X7R and pannexin 1 (Panx1) may form a large pore in cortical neurons as assessed by electrophysiology. Finally, the participation of calcium homeostasis modulator 1 is also suggested, another non-selective ion channel that can release ATP, and that could play a role in ischemic events, together with P2X7 and Panx1 during excitotoxicity by ATP.


Assuntos
Trifosfato de Adenosina/metabolismo , Encéfalo/metabolismo , Sistemas de Liberação de Medicamentos , Animais , Sistemas de Liberação de Medicamentos/tendências , Humanos , Ativação do Canal Iônico/fisiologia , Receptores Purinérgicos P2X7/metabolismo
9.
Glia ; 62(2): 199-216, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24311446

RESUMO

Adenosine receptor activation is involved in myelination and in apoptotic pathways linked to neurodegenerative diseases. In this study, we investigated the effects of adenosine receptor activation in the viability of oligodendrocytes of the rat optic nerve. Selective activation of A3 receptors in pure cultures of oligodendrocytes caused concentration-dependent apoptotic and necrotic death which was preceded by oxidative stress and mitochondrial membrane depolarization. Oligodendrocyte apoptosis induced by A3 receptor activation was caspase-dependent and caspase-independent. In addition to dissociated cultures, incubation of optic nerves ex vivo with adenosine and the A3 receptor agonist 2-CI-IB-MECA(1-[2-Chloro-6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-1-deoxy-N-methyl-b-D-ribofuranuronamide)-induced caspase-3 activation, oligodendrocyte damage, and myelin loss, effects which were prevented by the presence of caffeine and the A3 receptor antagonist MRS 1220 (N-[9-Chloro-2-(2-furanyl)[1,2,4]-triazolo [1,5-c]quinazolin-5-yl]benzene acetamide). Finally, ischemia-induced injury and functional loss to the optic nerve was attenuated by blocking A3 receptors. Together, these results indicate that adenosine may trigger oligodendrocyte death via activation of A3 receptors and suggest that this mechanism contributes to optic nerve and white matter ischemic damage.


Assuntos
Agonistas do Receptor A3 de Adenosina/administração & dosagem , Agonistas do Receptor A3 de Adenosina/farmacologia , Apoptose , Oligodendroglia/metabolismo , Nervo Óptico/metabolismo , Receptor A3 de Adenosina/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Células Cultivadas , Oligodendroglia/citologia , Ratos , Ratos Sprague-Dawley
10.
PNAS Nexus ; 3(5): pgae171, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38706727

RESUMO

Directional motility is an essential property of cells. Despite its enormous relevance in many fundamental physiological and pathological processes, how cells control their locomotion movements remains an unresolved question. Here, we have addressed the systemic processes driving the directed locomotion of cells. Specifically, we have performed an exhaustive study analyzing the trajectories of 700 individual cells belonging to three different species (Amoeba proteus, Metamoeba leningradensis, and Amoeba borokensis) in four different scenarios: in absence of stimuli, under an electric field (galvanotaxis), in a chemotactic gradient (chemotaxis), and under simultaneous galvanotactic and chemotactic stimuli. All movements were analyzed using advanced quantitative tools. The results show that the trajectories are mainly characterized by coherent integrative responses that operate at the global cellular scale. These systemic migratory movements depend on the cooperative nonlinear interaction of most, if not all, molecular components of cells.

11.
Sci Adv ; 10(15): eadm7600, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608019

RESUMO

Myelination is essential for neuronal function and health. In peripheral nerves, >100 causative mutations have been identified that cause Charcot-Marie-Tooth disease, a disorder that can affect myelin sheaths. Among these, a number of mutations are related to essential targets of the posttranslational modification neddylation, although how these lead to myelin defects is unclear. Here, we demonstrate that inhibiting neddylation leads to a notable absence of peripheral myelin and axonal loss both in developing and regenerating mouse nerves. Our data indicate that neddylation exerts a global influence on the complex transcriptional and posttranscriptional program by simultaneously regulating the expression and function of multiple essential myelination signals, including the master transcription factor EGR2 and the negative regulators c-Jun and Sox2, and inducing global secondary changes in downstream pathways, including the mTOR and YAP/TAZ signaling pathways. This places neddylation as a critical regulator of myelination and delineates the potential pathogenic mechanisms involved in CMT mutations related to neddylation.


Assuntos
Doença de Charcot-Marie-Tooth , Células de Schwann , Animais , Camundongos , Bainha de Mielina/genética , Doença de Charcot-Marie-Tooth/genética , Mutação , Processamento de Proteína Pós-Traducional
12.
J Biol Chem ; 286(13): 11825-36, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21300799

RESUMO

Oligodendrocytes, the myelinating cells of the CNS, are highly vulnerable to glutamate excitotoxicity, a mechanism involved in tissue damage in multiple sclerosis. Thus, understanding oligodendrocyte death at the molecular level is important to develop new therapeutic approaches to treat the disease. Here, using microarray analysis and quantitative PCR, we observed that dual-specific phosphatase-6 (Dusp6), an extracellular regulated kinase-specific phosphatase, is up-regulated in oligodendrocyte cultures as well as in optic nerves after AMPA receptor activation. In turn, Dusp6 is overexpressed in optic nerves from multiple sclerosis patients before the appearance of evident damage in this structure. We further analyzed the role of Dusp6 and ERK signaling in excitotoxic oligodendrocyte death and observed that AMPA receptor activation induces a rapid increase in ERK1/2 phosphorylation. Blocking Dusp6 expression, which enhances ERK1/2 phosphorylation, significantly diminished AMPA receptor-induced oligodendrocyte death. In contrast, MAPK/ERK pathway inhibition with UO126 significantly potentiates excitotoxic oligodendrocyte death and increases cytochrome c release, mitochondrial depolarization, and mitochondrial calcium overload produced by AMPA receptor stimulation. Upstream analysis demonstrated that MAPK/ERK signaling alters AMPA receptor properties. Indeed, Dusp6 overexpression as well as incubation with UO126 produced an increase in AMPA receptor-induced inward currents and cytosolic calcium overload. Together, these data suggest that levels of phosphorylated ERK, controlled by Dusp6 phosphatase, regulate glutamate receptor permeability and oligodendroglial excitotoxicity. Therefore, targeting Dusp6 may be a useful strategy to prevent oligodendrocyte death in multiple sclerosis and other diseases involving CNS white matter.


Assuntos
Fosfatase 6 de Especificidade Dupla/biossíntese , Sistema de Sinalização das MAP Quinases , Proteínas do Tecido Nervoso/biossíntese , Oligodendroglia/metabolismo , Nervo Óptico/metabolismo , Receptores de AMPA/metabolismo , Animais , Butadienos/farmacologia , Cálcio/metabolismo , Morte Celular/efeitos dos fármacos , Células Cultivadas , Fosfatase 6 de Especificidade Dupla/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Masculino , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Esclerose Múltipla/metabolismo , Esclerose Múltipla/terapia , Proteínas do Tecido Nervoso/antagonistas & inibidores , Nitrilas/farmacologia , Especificidade de Órgãos/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/agonistas
13.
Neurobiol Dis ; 45(3): 954-61, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22186422

RESUMO

Overactivation of subtype P2X7 receptors can induce excitotoxic neuronal death by calcium (Ca(2+)) overload. In this study, we characterize the functional properties of P2X7 receptors using electrophysiology and Ca(2+) monitoring in primary cortical neuron cultures and in brain slices. Both electrical responses and Ca(2+) influx induced by ATP and benzoyl-ATP were reduced by Brilliant Blue G (BBG) at concentrations which specifically inhibit P2X7 receptors. In turn, oxygen-glucose deprivation (OGD) caused neuronal death that was reduced with BBG application. OGD in neuron cultures and brain slices generated an inward current, which was delayed and reduced by BBG. To assess the relevance of these in vitro findings, we used middle cerebral artery occlusion in rats as a model of transient focal cerebral ischemia to study the neuroprotective effect of BBG in vivo. Treatment with BBG (twice per day, 30 mg/kg) produced a 60% reduction in the extent of brain damage compared to treatment with vehicle alone. These results show that P2X7 purinergic receptors mediate tissue damage after OGD in neurons and following transient brain ischemia. Therefore, these receptors are a relevant molecular target for the development of new treatments to attenuate brain damage following stroke.


Assuntos
Trifosfato de Adenosina/efeitos adversos , Lesões Encefálicas , Infarto da Artéria Cerebral Média/complicações , Neurônios/efeitos dos fármacos , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Corantes de Rosanilina/uso terapêutico , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Análise de Variância , Animais , Lesões Encefálicas/etiologia , Lesões Encefálicas/patologia , Lesões Encefálicas/prevenção & controle , Cálcio/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Embrião de Mamíferos , Agonistas de Aminoácidos Excitatórios/toxicidade , Fluoresceínas , Glucose/deficiência , Hipóxia/tratamento farmacológico , Técnicas In Vitro , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , N-Metilaspartato/toxicidade , Exame Neurológico , Compostos Orgânicos , Técnicas de Patch-Clamp , Fosfopiruvato Hidratase/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X7/metabolismo , Sais de Tetrazólio
14.
Front Pharmacol ; 13: 956886, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147343

RESUMO

Cannabidiol (CBD), the main non-psychoactive cannabinoid found in the cannabis plant, elicits several pharmacological effects via the 5-HT1A receptor. The dorsal raphe nucleus (DRN) is the main serotonergic cluster in the brain that expresses the 5-HT1A receptor. To date, the effect of CBD on the neuronal activity of DRN 5-HT cells and its interaction with somatodendritic 5-HT1A autoreceptors have not been characterized. Our aim was to study the effect of CBD on the firing activity of DRN 5-HT cells and the 5-HT1A autoreceptor activation by electrophysiological and calcium imaging techniques in male Sprague-Dawley rat brain slices. Perfusion with CBD (30 µM, 10 min) did not significantly change the firing rate of DRN 5-HT cells or the inhibitory effect of 5-HT (50-100 µM, 1 min). However, in the presence of CBD (30 µM, 10 min), the inhibitory effects of 8-OH-DPAT (10 nM) and ipsapirone (100 nM) were reduced by 66% and 53%, respectively. CBD failed to reverse ipsapirone-induced inhibition, whereas perfusion with the 5-HT1A receptor antagonist WAY100635 (30 nM) completely restored by 97.05 ± 14.63% the firing activity of 5-HT cells. Administration of AM251 (1 µM), MDL100907 (30 nM), or picrotoxin (20 µM) did not change the blockade produced by CBD (30 µM) on ipsapirone-induced inhibition. Our study also shows that CBD failed to modify the KCl (15 mM, 4 min)-evoked increase in [Ca2+]i or the inhibitory effect of ipsapirone (1 µM, 4 min) on KCl-evoked [Ca2+]i. In conclusion, CBD does not activate 5-HT1A autoreceptors, but it hindered the inhibitory effect produced by selective 5-HT1A receptor agonists on the firing activity of DRN 5-HT cells through a mechanism that does not involve CB1, 5-HT2A, or GABAA receptors. Our data support a negative allosteric modulation of DRN somatodendritic 5-HT1A receptor by CBD.

15.
Front Cell Dev Biol ; 10: 841548, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372341

RESUMO

Abnormalities in myelination are associated to behavioral and cognitive dysfunction in neurodevelopmental psychiatric disorders. Thus, therapies to promote or accelerate myelination could potentially ameliorate symptoms in autism. Clemastine, a histamine H1 antagonist with anticholinergic properties against muscarinic M1 receptor, is the most promising drug with promyelinating properties. Clemastine penetrates the blood brain barrier efficiently and promotes remyelination in different animal models of neurodegeneration including multiple sclerosis, ischemia and Alzheimer's disease. However, its role in myelination during development is unknown. We showed that clemastine treatment during development increased oligodendrocyte differentiation in both white and gray matter. However, despite the increase in the number of oligodendrocytes, conduction velocity of myelinated fibers of corpus callosum decreased in clemastine treated mice. Confocal and electron microscopy showed a reduction in the number of myelinated axons and nodes of Ranvier and a reduction of myelin thickness in corpus callosum. To understand the mechanisms leading to myelin formation impairment in the presence of an excess of myelinating oligodendrocytes, we focused on microglial cells that also express muscarinic M1 receptors. Importantly, the population of CD11c+ microglia cells, necessary for myelination, as well as the levels of insulin growth factor-1 decrease in clemastine-treated mice. Altogether, these data suggest that clemastine impact on myelin development is more complex than previously thought and could be dependent on microglia-oligodendrocyte crosstalk. Further studies are needed to clarify the role of microglia cells on developmental myelination.

16.
Glia ; 58(6): 730-40, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20029962

RESUMO

Brain ischemia leading to stroke is a major cause of disability in developed countries. Therapeutic strategies have most commonly focused on protecting neurons from ischemic damage. However, ischemic damage to white matter causes oligodendrocyte death, myelin disruption, and axon dysfunction, and it is partially mediated by glutamate excitotoxicity. We have previously demonstrated that oligodendrocytes express ionotropic purinergic receptors. The objective of this study was to investigate the role of purinergic signaling in white matter ischemia. We show that, in addition to glutamate, enhanced ATP signaling during ischemia is also deleterious to oligodendrocytes and myelin, and impairs white matter function. Thus, ischemic oligodendrocytes in culture display an inward current and cytosolic Ca(2+) overload, which is partially mediated by P2X7 receptors. Indeed, oligodendrocytes release ATP after oxygen and glucose deprivation through the opening of pannexin hemichannels. Consistently, ischemia-induced mitochondrial depolarization as well as oxidative stress culminating in cell death are partially reversed by P2X7 receptor antagonists, by the ATP degrading enzyme apyrase and by blockers of pannexin hemichannels. In turn, ischemic damage in isolated optic nerves, which share the properties of brain white matter, is greatly attenuated by all these drugs. Ultrastructural analysis and electrophysiological recordings demonstrated that P2X7 antagonists prevent ischemic damage to oligodendrocytes and myelin, and improved action potential recovery after ischemia. These data indicate that ATP released during ischemia and the subsequent activation of P2X7 receptor is critical to white matter demise during stroke and point to this receptor type as a therapeutic target to limit tissue damage in cerebrovascular diseases.


Assuntos
Potenciais de Ação/fisiologia , Oligodendroglia/fisiologia , Neuropatia Óptica Isquêmica/metabolismo , Neuropatia Óptica Isquêmica/patologia , Receptores Purinérgicos P2/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Animais Recém-Nascidos , Axônios/metabolismo , Axônios/patologia , Cálcio/metabolismo , Morte Celular/efeitos dos fármacos , Conexinas/genética , Conexinas/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Glucose/deficiência , Hipóxia/patologia , L-Lactato Desidrogenase/metabolismo , Microscopia Eletrônica de Transmissão/métodos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/ultraestrutura , Nervo Óptico/citologia , Técnicas de Patch-Clamp/métodos , Antagonistas do Receptor Purinérgico P2 , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Receptores Purinérgicos P2X7
17.
Front Mol Neurosci ; 13: 92, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714144

RESUMO

Shortage of oxygen and nutrients in the brain induces the release of glutamate and ATP that can cause excitotoxicity and contribute to neuronal and glial damage. Our understanding of the mechanisms of ATP release and toxicity in cerebrovascular diseases is incomplete. This review aims at summarizing current knowledge about the participation of key elements in the ATP-mediated deleterious effects in these pathologies. This includes pannexin-1 hemichannels, calcium homeostasis modulator-1 (CALHM1), purinergic P2X7 receptors, and other intermediaries of CNS injury downstream of ATP release. Available data together with recent pharmacological developments in purinergic signaling may constitute a new opportunity to translate preclinical findings into more effective therapies in cerebrovascular diseases.

18.
Neuroscience ; 439: 163-180, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31349008

RESUMO

Differentiation of oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes (OLs) is a key event for axonal myelination in the central nervous system (CNS). Several growth factors and neurotransmitters like GABA are postulated as important regulators of that process, and different protein kinases may also participate in OL differentiation and myelination. However, the molecular mechanisms underlying the regulation of myelination by neurotransmitters are only partially known. In the present study, we provide evidence showing that GABA receptors (GABARs) play an important role in OL differentiation. First, we observed that OPCs and OLs synthesize GABA and expressed GABAR and transporters, both in vitro and in vivo and, in contrast to GABAARs, the subunits GABAB1R and GABAB2R are expressed in OLs over time. Then, we found that exogenous GABA increases the number of myelin segments and MBP expression in DRG-OPC cocultures, indicating that GABA regulates myelination when OLs are in contact with axons. Notably, in purified rat OPC cultures, chronic treatment with GABA and baclofen, specific GABABR agonist, accelerates OPC differentiation by enhancing the processes branching and myelin protein expression, effects that are reverted in presence of GABABR specific antagonist CGP55845. Exposure of OPCs to baclofen promotes the Src-phosphorylation, and the baclofen-induced maturation is attenuated in presence of the Src-family kinases inhibitor PP2. None of these effects are mediated by the GABAAR agonist muscimol. Together, these results highlight the relevance of the GABAergic system in OL differentiation, and indicate that this functional role is mediated through GABABR involving the participation of Src-family kinases. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.


Assuntos
Oligodendroglia , Receptores de GABA-B , Animais , Diferenciação Celular , Células Cultivadas , Bainha de Mielina , Ratos , Ácido gama-Aminobutírico
19.
Sci Rep ; 9(1): 16369, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31704992

RESUMO

For a wide range of cells, from bacteria to mammals, locomotion movements are a crucial systemic behavior for cellular life. Despite its importance in a plethora of fundamental physiological processes and human pathologies, how unicellular organisms efficiently regulate their locomotion system is an unresolved question. Here, to understand the dynamic characteristics of the locomotion movements and to quantitatively study the role of the nucleus in the migration of Amoeba proteus we have analyzed the movement trajectories of enucleated and non-enucleated amoebas on flat two-dimensional (2D) surfaces using advanced non-linear physical-mathematical tools and computational methods. Our analysis shows that both non-enucleated and enucleated amoebas display the same kind of dynamic migration structure characterized by highly organized data sequences, super-diffusion, non-trivial long-range positive correlations, persistent dynamics with trend-reinforcing behavior, and move-step fluctuations with scale invariant properties. Our results suggest that the presence of the nucleus does not significantly affect the locomotion of amoeba in 2D environments.


Assuntos
Amoeba/fisiologia , Núcleo Celular/fisiologia , Modelos Biológicos , Análise dos Mínimos Quadrados , Microscopia de Vídeo , Movimento/fisiologia , Dinâmica não Linear
20.
Nat Commun ; 10(1): 3690, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31417086

RESUMO

Associative memory is the main type of learning by which complex organisms endowed with evolved nervous systems respond efficiently to certain environmental stimuli. It has been found in different multicellular species, from cephalopods to humans, but never in individual cells. Here we describe a motility pattern consistent with associative conditioned behavior in the microorganism Amoeba proteus. We use a controlled direct-current electric field as the conditioned stimulus, and a specific chemotactic peptide as the unconditioned stimulus. The amoebae are capable of linking two independent past events, generating persistent locomotion movements that can prevail for 44 min on average. We confirm a similar behavior in a related species, Metamoeba leningradensis. Thus, our results indicate that unicellular organisms can modify their behavior during migration by associative conditioning.


Assuntos
Amoeba/fisiologia , Aprendizagem por Associação/fisiologia , Condicionamento Clássico/fisiologia , Locomoção/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA