Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37430513

RESUMO

Nowadays, optical systems play an important role in communications. Dual depletion PIN photodiodes are common devices that can operate in different optical bands, depending on the chosen semiconductors. However, since semiconductor properties vary with the surrounding conditions, some optical devices/systems can act as sensors. In this research work, a numerical model is implemented to analyze the frequency response of this kind of structure. It considers both transit time and capacitive effects, and can be applied to compute photodiode frequency response under nonuniform illumination. The InP-In0.53Ga0.47As photodiode is usually used to convert optical into electrical power at wavelengths around 1300 nm (O-band). This model is implemented considering an input frequency variation of up to 100 GHz. The focus of this research work was essentially the determination of the device's bandwidth from the computed spectra. This was performed at three different temperatures: 275 K, 300 K, and 325 K. The aim of this research work was to analyze if a InP-In0.53Ga0.47As photodiode can act as a temperature sensor, to detect temperature variations. Furthermore, the device dimensions were optimized, to obtain a temperature sensor. The optimized device, for a 6 V applied voltage and an active area of 500 µm2, had a total length of 2.536 µm, in which 53.95% corresponded to the absorption region. In these conditions, if the temperature increases 25 K from the room temperature, one should expect a bandwidth increase of 8.374 GHz, and if it decreases 25 K from that reference, the bandwidth should reduce by 3.620 GHz. This temperature sensor could be incorporated in common InP photonic integrated circuits, which are commonly used in telecommunications.

2.
Sci Rep ; 13(1): 12490, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528136

RESUMO

Renewable energies are increasingly playing an important role in the world's energy supply. Society demands new solutions to solve environmental issues caused by fossil fuels. The importance of photovoltaic technology has been increasing and consequently, the necessity to have more accurate models to characterise the performance of solar cells during their entire lifetime has rose as well. Performance problems may appear during devices' lifetimes associated with factors, such as weather conditions or faulty installation. Cracking might occur, leading to abrupt reductions on the produced power, quite difficult and expensive to fix. The I-V curves of a defected or cracked solar cell might not have the shape imposed by the usual models as 1M5P. In this article, cracked c-Si solar cells are modelled using a novel model: d1MxP. This model is based on the discretisation of the diode's response on models as 1M5P. Instead of imposing a shape and compute some parameters to fit it on experimental data, the proposed model connects every two points. The results suggest a better fit using the proposed model in comparison with the 1M5P, not only in the original curves, but also modelling cracked cells. As consequence of a better fitting, the computation of important figures of merit as maximum power point or fill factor, reveals to be more precise. It is concluded that the proposed model might characterise the performance of a solar cell, even cracked, which is a huge advance aiming the possibility of simulating complex problems during the cells' operation lifetime.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA