Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 108(42): E864-70, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-21949378

RESUMO

Medicago truncatula is a model for investigating legume genetics, including the genetics and evolution of legume-rhizobia symbiosis. We used whole-genome sequence data to identify and characterize sequence polymorphisms and linkage disequilibrium (LD) in a diverse collection of 26 M. truncatula accessions. Our analyses reveal that M. truncatula harbors both higher diversity and less LD than soybean (Glycine max) and exhibits patterns of LD and recombination similar to Arabidopsis thaliana. The population-scaled recombination rate is approximately one-third of the mutation rate, consistent with expectations for a species with a high selfing rate. Linkage disequilibrium, however, is not extensive, and therefore, the low recombination rate is likely not a major constraint to adaptation. Nucleotide diversity in 100-kb windows was negatively correlated with gene density, which is expected if diversity is shaped by selection acting against slightly deleterious mutations. Among putative coding regions, members of four gene families harbor significantly higher diversity than the genome-wide average. Three of these families are involved in resistance against pathogens; one of these families, the nodule-specific, cysteine-rich gene family, is specific to the galegoid legumes and is involved in control of rhizobial differentiation. The more than 3 million SNPs that we detected, approximately one-half of which are present in more than one accession, are a valuable resource for genome-wide association mapping of genes responsible for phenotypic diversity in legumes, especially traits associated with symbiosis and nodulation.


Assuntos
Medicago truncatula/genética , DNA de Plantas/genética , Fabaceae/genética , Variação Genética , Genoma de Planta , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Recombinação Genética
2.
Plant Physiol ; 138(2): 600-10, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15955924

RESUMO

Defensins represent an ancient and diverse set of small, cysteine-rich, antimicrobial peptides in mammals, insects, and plants. According to published accounts, most species' genomes contain 15 to 50 defensins. Starting with a set of largely nodule-specific defensin-like sequences (DEFLs) from the model legume Medicago truncatula, we built motif models to search the near-complete Arabidopsis (Arabidopsis thaliana) genome. We identified 317 DEFLs, yet 80% were unannotated at The Arabidopsis Information Resource and had no prior evidence of expression. We demonstrate that many of these DEFL genes are clustered in the Arabidopsis genome and that individual clusters have evolved from successive rounds of gene duplication and divergent or purifying selection. Sequencing reverse transcription-PCR products from five DEFL clusters confirmed our gene predictions and verified expression. For four of the largest clusters of DEFLs, we present the first evidence of expression, most frequently in floral tissues. To determine the abundance of DEFLs in other plant families, we used our motif models to search The Institute for Genomic Research's gene indices and identified approximately 1,100 DEFLs. These expressed DEFLs were found mostly in reproductive tissues, consistent with our reverse transcription-PCR results. Sequence-based clustering of all identified DEFLs revealed separate tissue- or taxon-specific subgroups. Previously, we and others showed that more than 300 DEFL genes were expressed in M. truncatula nodules, organs not present in most plants. We have used this information to annotate the Arabidopsis genome and now provide evidence of a large DEFL superfamily present in expressed tissues of all sequenced plants.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Defensinas/genética , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Evolução Biológica , Defensinas/química , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Genômica , Dados de Sequência Molecular , Família Multigênica , Doenças das Plantas , Homologia de Sequência de Aminoácidos , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA