Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 17(14): e2008155, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33682363

RESUMO

Being a key player in intercellular communications, nanoscale extracellular vesicles (EVs) offer unique opportunities for both diagnostics and therapeutics. However, their cellular origin and functional identity remain elusive due to the high heterogeneity in their molecular and physical features. Here, for the first time, multiple EV parameters involving membrane protein composition, size and mechanical properties on single small EVs (sEVs) are simultaneously studied by combined fluorescence and atomic force microscopy. Furthermore, their correlation and heterogeneity in different cellular sources are investigated. The study, performed on sEVs derived from human embryonic kidney 293, cord blood mesenchymal stromal and human acute monocytic leukemia cell lines, identifies both common and cell line-specific sEV subpopulations bearing distinct distributions of the common tetraspanins (CD9, CD63, and CD81) and biophysical properties. Although the tetraspanin abundances of individual sEVs are independent of their sizes, the expression levels of CD9 and CD63 are strongly correlated. A sEV population co-expressing all the three tetraspanins in relatively high abundance, however, having average diameters of <100 nm and relatively low Young moduli, is also found in all cell lines. Such a multiparametric approach is expected to provide new insights regarding EV biology and functions, potentially deciphering unsolved questions in this field.


Assuntos
Vesículas Extracelulares , Biofísica , Comunicação Celular , Criança , Humanos , Microscopia de Fluorescência , Tetraspaninas
2.
J Colloid Interface Sci ; 652(Pt B): 1937-1943, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37690301

RESUMO

Small extracellular vesicles (sEVs) are known to play an important role in the communication between distant cells and to deliver biological information throughout the body. To date, many studies have focused on the role of sEVs characteristics such as cell origin, surface composition, and molecular cargo on the resulting uptake by the recipient cell. Yet, a full understanding of the sEV fusion process with recipient cells and in particular the role of cell membrane physical properties on the uptake are still lacking. Here we explore this problem using sEVs from a cellular model of triple-negative breast cancer fusing to a range of synthetic planar lipid bilayers both with and without cholesterol, and designed to mimic the formation of 'raft'-like nanodomains in cell membranes. Using time-resolved Atomic Force Microscopy we were able to track the sEVs interaction with the different model membranes, showing the process to be strongly dependent on the local membrane fluidity. The strongest interaction and fusion is observed over the less fluid regions, with sEVs even able to disrupt ordered domains at sufficiently high cholesterol concentration. Our findings suggest the biophysical characteristics of recipient cell membranes to be crucial for sEVs uptake regulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA