Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(15)2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39124523

RESUMO

The development of materials and the products made from them should respond to new challenges posed by market changes and also by climate change. Therefore, the objective of this investigation was to develop a method that supports the sustainable development of materials and the products made from them based on an aggregated indicator of quality and environmental load in the life cycle (QLCA). The testing and illustration of the QLCA method included a passenger car tyre and nine prototypes. These prototypes were described using eight quality criteria: season, class, size of the load index, speed index, rolling, adhesion, and external noise. Then, customer expectations regarding the importance of the criteria and satisfaction with the indicators in the current and modified states were obtained. Based on the customer assessment, the quality indicators of the prototypes were assessed. This assessment was supported by the weighted sum model (WSM) and the entropy method. Then, life cycle assessment for the reference tyre was performed using the Ecoinvent database in the OpenLCA program. LCA indicators were modelled for other prototypes, taking into account quality changes. As a result of the verification of the method, an aggregated QLCA indicator was estimated, based on which it was possible to select the most favourable (qualitatively and environmentally) prototype out of nine. This was the P4 prototype (QLCA = 0.57). The next position in the ranking was taken by P7 (QLCA = 0.43). The QLCA method can be used to determine the direction of development of materials and products in terms of their sustainable development.

2.
Materials (Basel) ; 17(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38399204

RESUMO

The advancement of quality and environmentally sustainable materials and products made from them has improved significantly over the last few years. However, a research gap is the lack of a developed model that allows for the simultaneous analysis of quality and environmental criteria in the life-cycle assessment (LCA) for the selection of materials in newly designed products. Therefore, the objective of the research was to develop a model that supports the prediction of the environmental impact and expected quality of materials and products made from them according to the design solution scenarios considering their LCA. The model implements the GRA method and environmental impact analysis according to the LCA based on ISO 14040. The model test was carried out for light passenger vehicles of BEV with a lithium-ion battery (LiFePO4) and for ICEV. The results indicated a relatively comparable level of quality, but in the case of the environmental impact throughout the life-cycle, the predominant amount of CO2 emissions in the use phase for combustion vehicles. The originality of the developed model to create scenarios of design solutions is created according to which the optimal direction of their development in terms of quality and environment throughout LCA can be predicted.

3.
Materials (Basel) ; 17(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38930325

RESUMO

This study involved the optimization of the molded pieces manufacturing process from a poly-3-hydroxybutyrate-co-3-hydroxyvalerate biocomposite containing 30% wood flour by mass. The amount of wood flour and preliminary processing parameters were determined on the basis of preliminary tests. The aim of the optimization was to find the configuration of important parameters of the injection process to obtain molded pieces of good quality, in terms of aesthetics, dimensions, and mechanical properties. The products tested for quality were dog bone specimens. The biocomposite was produced using a single-screw extruder, whereas molded pieces were made using an injection molding process. The Taguchi method was applied to optimize the injection molding parameters, which determine the products quality. Control factors were selected at three levels. The L27 orthogonal plan was used. For each set of input parameters from this plan, four processing tests were performed. The sample weight, shrinkage, elongation at break, tensile strength, and Young's modulus were selected to assess the quality of the molded parts. As a result of the research, the processing parameters of the tested biocomposite were determined, enabling the production of good-quality molded pieces. No common parameter configuration was found for different optimization criteria. Further research should focus on finding a different range of technological parameters. At the same time, it was found that the range of processing parameters of the produced biocomposite, especially processing temperature, made it possible to use it in the Wood Polymer Composites segment.

4.
Materials (Basel) ; 16(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36837278

RESUMO

Improving products and production processes is necessary to ensure the competitiveness of the organisation. As part of these improvements, the popular approach is to use the FMEA method (Failure Mode and Effect Analysis). In the traditional FMEA approach, only the qualitative aspect is included, i.e., the analysis of the quality level of products or processes, its possible incompatibilities, and then proposing improving actions for them. It seems insufficient in times of expansion of the idea of sustainable development and dynamically changing customer requirements. Hence, the purpose of the research is to develop a fuzzy QE-FMEA method to simultaneously analyze hazards for product quality and the natural environment. This method will be based on a fuzzy decision environment. The main elements of originality of the developed method are: (i) extension of the characteristics of the selection of ratings for indicators with triangular fuzzy numbers and the development of a new characteristics of the selection of ratings for the environmental impact indicator, (ii) development of a selection matrix for the qualitative-environmental indicator (QE) according to the rules of triangular fuzzy numbers, (iii) determination of the method of estimating the value of the threat priority, additionally considering the qualitative-environmental indicator (RQE). The complement of research is developed procedure of the Fuzzy QE-FMEA method. It was shown that it is possible to include the effects of incompatibilities (effects of defects occurring in products or processes), which were simultaneously assessed considering the importance and impact on the natural environment. This method will be useful for any company for analysing defects of any products or processes mainly with significant impact on the natural environment.

5.
Materials (Basel) ; 16(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36676458

RESUMO

In the face of ongoing market changes, multifaceted quality analyses contribute to ensuring production continuity, increasing the quality of the products offered and maintaining a stable market position. The aim of the research was to create a unified rank model for detection methods in the identification of aluminium casting non-conformities, in line with the paradigms of the fourth industrial revolution. The originality of the model enables the creation of a rank for the effectiveness of total inspection points allowing for the optimisation of detection methods. Verification of the model was carried out against the production process of aluminium casting. The model included the integration of non-destructive testing (NDT) methods and the analysis of critical product non-conformities, along with the determination of the level of effectiveness and efficiency of inspection points. The resulting ranking of detection methods indicated the NDT method as the most effective, which was influenced by the significant detection of critical non-conformities and the automation of the process. The study observed little difference in the visual inspection and measurement efficiency parameters, which was due to the identifiability of non-conformities with a lower degree of significance and the low level of inspection cost. Further research will look at the implications of the model in other production processes.

6.
Materials (Basel) ; 16(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37297207

RESUMO

This article includes an analysis of the possibility of using polymer materials for the production of harmonic drive. The use of additive methods greatly eases and accelerates the manufacturing of the flexspline. In the case of gears made of polymeric materials using rapid prototyping (RP) methods, the problem is often with their mechanical strength. In a harmonic drive, the wheel is uniquely exposed to damage, because during work, it deforms and is additionally loaded with torque. Therefore, numerical calculations were conducted using the finite element method (FEM) in the Abaqus program. As a result, information was obtained on the distribution of stresses in the flexspline and their maximum values. On this basis, it was possible to determine whether a flexspline made of specific polymers could be used in commercial harmonic drives or whether they were only adequate for the production of prototypes.

7.
Materials (Basel) ; 16(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37241510

RESUMO

Ensuring the expected quality of materials is still a challenge, mainly in order to precisely plan improvement actions that allow for stabilization of the production process. Therefore, the purpose of this research was to develop a novel procedure to identify critical causes of material incompatibility-the causes that have the largest negative impact on material deterioration, and the natural environment. The main originality of this procedure is developing a way to coherent analyse the mutual influence of the many causes of incompatibility of any material, after which the critical causes are identified and a ranking of improvement actions to eliminate these causes is created. A novelty is also developed in the algorithm supporting this procedure, which can be realized in three different ways to solve this problem, i.e.; by considering the impact of material incompatibility on: (i) the deterioration of the material quality; (ii) the deterioration of the natural environment; and (iii) simultaneously the deterioration of the quality of the material and the natural environment. The effectiveness of this procedure was confirmed after tests on 410 alloy, from which a mechanical seal was made. However, this procedure can be useful for any material or industrial product.

8.
Materials (Basel) ; 17(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38203909

RESUMO

An important issue addressed in research on the assessment of the quality of polymer products is the quality of the polymer material itself and, in accordance with the idea of waste-free management, the impact of its repeated processing on its properties and the quality of the products. In this work, a biocomposite, based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with short hemp fibers, was obtained and repeatedly processed, which is a continuation of the research undertaken by the team in the field of this type of biocomposites. After subsequent stages of processing, the selected mechanical, processing and functional properties of the products were assessed. For this purpose, microscopic tests were carried out, mechanical properties were tested in static tensile and impact tests, viscosity curves were determined after subsequent processing cycles and changes in plastic pressure in the mold cavity were determined directly during processing. The results of the presented research confirm only a slight decrease in the mechanical properties of the produced type of biocomposite, even after it has been reprocessed five times, which gives extra weight to arguments for its commercialization as a substitute for petrochemical-based plastics. No significant changes were found in the used parameters and processing properties with the stages of processing, which allows for a predictable and stable manufacturing process using, for example, the injection molding process.

9.
Materials (Basel) ; 15(18)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36143634

RESUMO

Material production processes are special processes. As part of continuous improvement, it is extremely important to find the causes of the incompatibilities that occur in them. To increase the effectiveness of these actions, different methods are used. The purpose of this study was to present an original method that allows the classification to improve the combinations of actions of product with material incompatibility. The originality of this method allows for the sequential and coherent operation of adequate analysis techniques of causes resulting in incompatibilities in the product material and, consequently, identifying the reasons that influence their quality. The presented method was developed using a new combination of brainstorming (BM), the Ishikawa diagram with 5M rule, the DEMATEL method, and the algorithm used in the MATLAB software. As a result of the proposed applied method, it is possible to create a sequence of actions that include interactions between important causes of product incompatibility, which was supported by the test of this method. This method was shown to support the creation of a rank of importance of improvement actions. This ranking allows for improvement of any product according to the possibilities of enterprises and simultaneously allows for reducing or eliminating products' incompatibilities.

10.
Materials (Basel) ; 15(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35806565

RESUMO

Stabilizing the quality of industrial product materials remains a challenge. This applies mainly to new or significantly modified materials. It also refers to special processes. The tests of product quality can stabilize the quality of industrial product materials. The popular method for this is using the non-destructive testing (NDT). The NDT identifies incompatibility but does not determine the cause of its occurrence. Hence, it was necessary to support the process of identifying causes of incompatibilities in products. The purpose of the article was to develop a model based on a new approach to determine the ranking of actions that are possible as part of the process of stabilizing the quality of industrial products. The model was developed to improve quality through sequential and systematic methods of identification (and reduce) and incompatibility. The quality management techniques and decision method were applied and combined in this model, i.e., SMART(-ER) the method, method of selecting a team of experts, brainstorming (BM), Ishikawa diagram with the 5M rule, Likert scale validation technique, arithmetic average, and Grey Relational Analysis (GRA). The test of this model was carried out to find cracks in the outer hull of 418 alloy four-point bearing (CPW-S 5616), which was identified by NDT (magnetic-powder method). As a result, a ranking of activities was obtained to stabilize the quality of the product and the main cause of incompatibility was indicated, i.e., the cause which can influence to the most degree influence on occurrence the incompatibility. The originality of the proposed model is an application in the right order of specially selected and combined qualitative methods and supporting decision methods. The finding of causes of incompatibility of products is the basis of product improvement in the area of stabilizing the quality of materials, mainly by the occurrence of special processes. The universality of the model refers to the possibility of its application for any material, processes of its formation, and processes of products, and any incompatibilities where the model can be integrated with quality control.

11.
Materials (Basel) ; 14(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34772024

RESUMO

An essential element of any industry is castings, which is determined by the technical conditions for their reception. However, conducting production in the foundry technology is burdened with many difficulties associated with, for example, the inability to control all of the parameters that may affect the casting quality. Therefore, it is essential to undertake improvement actions in this area. Efforts are being made to use non-destructive testing (NDT) as a part of quality control, but these methods are rarely combined in a single diagnostic run. As a part of quality improvement, it is also essential to identify the root cause of the problem. For this reason, it is justified to develop a model of diagnosing and searching for non-conformities, which would combine NDT tests and quality management tools. The model included the visual, ultrasound, and eddy current examination in the diagnostic part, and the Pareto-Lorenz diagram correlated with ABC method, histogram, and 5WHY method (asking five questions why). The study's originality is manifested in the combination of several NDT methods with quality management methods in one model. Using integrally configured methods in the proposed model, it was possible to: reduce diagnostic uncertainty, characterize the critical group of non-conformities, and identify the root causes of the quality problem. The model is a new and universal method that can be implied in any foundry company in order to ensure the stability of the production processes. The application of the model contributes to an increase in the detection speed and enables the reduction of non-conformities in aluminium castings, thus increasing the quality level of the offered products.

12.
Materials (Basel) ; 14(24)2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34947466

RESUMO

Improving the quality of industrial products quality still is a challenge. Despite using quality control, there is a constant need to support this process to achieve an effective, precise, and complex analysis of product quality. The purpose was to develop a universal model that supports improving the quality of products via the consistent and repetitive determination of the causes of product incompatibilities and actions leading to their elimination; the model can be integrated with any quality control of the product. The model verification was carried out for the incompatibility of the mechanical seal in alloy 410, in which the porosity cluster was identified by the fluorescence method (FPI). The purpose of the analysis was created by the SMART(-ER) method. Then, a team of experts was selected from which the brainstorming (BM) was realized. After the BM method, the source of incompatibility and initial causes were identified. Then, the Ishikawa diagram (according to rule 5M + E) was developed to group the initial causes. Next, during the BM method, the main causes were selected. In the last stage, the 5Why method was used to determine improvement actions, i.e., adjust clotting parameters, introduce the obligation to undergo periodic training, and set aside a separate place for storing the electrodes. Originality is the combination of selected quality management tools in a coherent model, the main aim of which is to identify the main causes of incompatibility and improvement actions. Additionally, this model is universal and has applications with analyzing any product and the causes of its incompatibility, and it can be integrated with any product quality control. Therefore, the model can be useful for improving the quality of products in any enterprise.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA