Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 38(4): 1428-1446, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33211093

RESUMO

As actors of global carbon cycle, Agaricomycetes (Basidiomycota) have developed complex enzymatic machineries that allow them to decompose all plant polymers, including lignin. Among them, saprotrophic Agaricales are characterized by an unparalleled diversity of habitats and lifestyles. Comparative analysis of 52 Agaricomycetes genomes (14 of them sequenced de novo) reveals that Agaricales possess a large diversity of hydrolytic and oxidative enzymes for lignocellulose decay. Based on the gene families with the predicted highest evolutionary rates-namely cellulose-binding CBM1, glycoside hydrolase GH43, lytic polysaccharide monooxygenase AA9, class-II peroxidases, glucose-methanol-choline oxidase/dehydrogenases, laccases, and unspecific peroxygenases-we reconstructed the lifestyles of the ancestors that led to the extant lignocellulose-decomposing Agaricomycetes. The changes in the enzymatic toolkit of ancestral Agaricales are correlated with the evolution of their ability to grow not only on wood but also on leaf litter and decayed wood, with grass-litter decomposers as the most recent eco-physiological group. In this context, the above families were analyzed in detail in connection with lifestyle diversity. Peroxidases appear as a central component of the enzymatic toolkit of saprotrophic Agaricomycetes, consistent with their essential role in lignin degradation and high evolutionary rates. This includes not only expansions/losses in peroxidase genes common to other basidiomycetes but also the widespread presence in Agaricales (and Russulales) of new peroxidases types not found in wood-rotting Polyporales, and other Agaricomycetes orders. Therefore, we analyzed the peroxidase evolution in Agaricomycetes by ancestral-sequence reconstruction revealing several major evolutionary pathways and mapped the appearance of the different enzyme types in a time-calibrated species tree.


Assuntos
Agaricales/genética , Genoma Fúngico , Lignina/metabolismo , Peroxidases/genética , Filogenia , Agaricales/enzimologia , Ecossistema , Família Multigênica , Peroxidases/metabolismo
2.
J Virol ; 89(4): 2090-103, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25473046

RESUMO

UNLABELLED: Most plant viruses counter the RNA silencing-based antiviral defense by expressing viral suppressors of RNA silencing (VSRs). In this sense, VSRs may be regarded as virulence effectors that can be recognized by the host as avirulence (avr) factors to induce R-mediated resistance. We made use of Agrobacterium-mediated transient coexpression of VSRs in combination with Potato virus X (PVX) to recapitulate in local tissues the systemic necrosis (SN) caused by PVX-potyvirus synergistic infections in Nicotiana benthamiana. The hypersensitive response (HR)-like response was associated with an enhanced accumulation of PVX subgenomic RNAs. We further show that expression of P25, the VSR of PVX, in the presence of VSR from different viruses elicited an HR-like response in Nicotiana spp. Furthermore, the expression of P25 by a Plum pox virus (PPV) vector was sufficient to induce an increase of PPV pathogenicity that led to necrotic mottling. A frameshift mutation in the P25 open reading frame (ORF) of PVX did not lead to necrosis when coexpressed with VSRs. These findings indicate that P25 is the main PVX determinant involved in eliciting a systemic HR-like response in PVX-associated synergisms. Moreover, we show that silencing of SGT1 and RAR1 attenuated cell death in both PVX-potyvirus synergistic infection and the HR-like response elicited by P25. Our study underscores that P25 variants that have impaired ability to suppress RNA silencing cannot act as elicitors when synergized by the presence of other VSRs. These findings highlight the importance of RNA silencing suppression activity in the HR-like response elicited by VSRs in certain hosts. IMPORTANCE: The work presented here describes how the activity of the PVX suppressor P25 elicits an HR-like response in Nicotiana spp. when overexpressed with other VSR proteins. This finding suggests that the SN response caused by PVX-associated synergisms is a delayed immune response triggered by P25, once it reaches a threshold level by the action of other VSRs. Moreover, this work supports the contention that the silencing suppressor activity of PVX P25 protein is a prerequisite for HR elicitation. We propose that unidentified avr determinants could be involved in other cases of viral synergisms in which heterologous "helper" viruses encoding strong VSRs exacerbate the accumulation of the avr-encoding virus.


Assuntos
Nicotiana/imunologia , Nicotiana/virologia , Doenças das Plantas/virologia , Potexvirus/crescimento & desenvolvimento , Proteínas Virais/metabolismo , Fatores de Virulência/metabolismo , Agrobacterium/genética , Expressão Gênica , Doenças das Plantas/imunologia , Potexvirus/patogenicidade , Transdução Genética , Proteínas Virais/genética , Virulência , Fatores de Virulência/genética
3.
J Virol ; 87(10): 5769-83, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23487466

RESUMO

One of the most severe symptoms caused by compatible plant-virus interactions is systemic necrosis, which shares common attributes with the hypersensitive response to incompatible pathogens. Although several studies have identified viral symptom determinants responsible for systemic necrosis, mechanistic models of how they contribute to necrosis in infected plants remain scarce. Here, we examined the involvement of different branches of the oxylipin biosynthesis pathway in the systemic necrosis response caused either by the synergistic interaction of Potato virus X with Potato virus Y (PVX-PVY) or by Tomato spotted wilt virus (TSWV) in Nicotiana benthamiana. Silencing either 9-lipoxygenase (LOX), 13-LOX, or α-dioxygenase-1 (α-DOX-1) attenuated the programmed cell death (PCD)-associated symptoms caused by infection with either PVX-PVY or TSWV. In contrast, silencing of the jasmonic acid perception gene, COI1 (Coronatine insensitive 1), expedited cell death during infection with compatible viruses. This correlated with an enhanced expression of oxylipin biosynthesis genes and dioxygenase activity in PVX-PVY-infected plants. Moreover, the Arabidopsis thaliana double lox1 α-dox-1 mutant became less susceptible to TSWV infection. We conclude that oxylipin metabolism is a critical component that positively regulates the process of PCD during compatible plant-virus interactions but does not play a role in restraining virus accumulation in planta.


Assuntos
Vias Biossintéticas/genética , Morte Celular , Nicotiana/virologia , Oxilipinas/metabolismo , Potexvirus/patogenicidade , Potyvirus/patogenicidade , Tospovirus/patogenicidade , Suscetibilidade a Doenças , Técnicas de Silenciamento de Genes , Doenças das Plantas/virologia
4.
Mol Plant Microbe Interact ; 25(5): 709-23, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22273391

RESUMO

Hypersensitive response-related programmed cell death (PCD) has been extensively analyzed in various plant-virus interactions. However, little is known about the changes in gene expression and phytohormone levels associated with cell death caused by compatible viruses. The synergistic interaction of Potato virus X (PVX) with a number of Potyvirus spp. results in increased symptoms that lead to systemic necrosis (SN) in Nicotiana benthamiana. Here, we show that SN induced by a PVX recombinant virus expressing a potyviral helper component-proteinase (HC-Pro) gene is associated with PCD. We have also compared transcriptomic and hormonal changes that occur in response to a compatible synergistic virus interaction that leads to SN, a systemic incompatible interaction conferred by the Tobacco mosaic virus-resistance gene N, and a PCD response conditioned by depletion of proteasome function. Our analysis indicates that the SN response clusters with the incompatible response by the similarity of their overall gene expression profiles. However, the expression profiles of both defense-related genes and hormone-responsive genes, and also the relative accumulation of several hormones in response to SN, relate more closely to the response to depletion of proteasome function than to that elicited by the incompatible interaction. This suggests a potential contribution of proteasome dysfunction to the increased pathogenicity observed in PVX-Potyvirus mixed infections. Furthermore, silencing of coronatine insensitive 1, a gene involved in jasmonate perception, in N. benthamiana accelerated cell death induced by PVX expressing HC-Pro.


Assuntos
Cisteína Endopeptidases/genética , Nicotiana/genética , Doenças das Plantas/virologia , Potexvirus/patogenicidade , Potyvirus/patogenicidade , Vírus do Mosaico do Tabaco/genética , Proteínas Virais/genética , Morte Celular , Análise por Conglomerados , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Interações Hospedeiro-Patógeno , Análise de Sequência com Séries de Oligonucleotídeos , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/virologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Potexvirus/genética , Potyvirus/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Nicotiana/virologia , Transcriptoma
6.
Mol Plant Microbe Interact ; 22(11): 1431-44, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19810812

RESUMO

Many virus diseases of economic importance to agriculture result from mixtures of different pathogens invading the host at a given time. This contrasts with the relatively scarce studies available on the molecular events associated with virus-host interactions in mixed infections. Compared with single infections, co-infection of Nicotiana benthamiana with Potato virus X (PVX) and Potato virus Y (PVY) resulted in increased systemic symptoms (synergism) that led to necrosis of the newly emerging leaves and death of the plant. A comparative transcriptional analysis was undertaken to identify quantitative and qualitative differences in gene expression during this synergistic infection and correlate these changes with the severe symptoms it caused. Global transcription profiles of doubly infected leaves were compared with those from singly infected leaves using gene ontology enrichment analysis and metabolic pathway annotator software. Functional gene categories altered by the double infection comprise suites of genes regulated coordinately, which are associated with chloroplast functions (downregulated), protein synthesis and degradation (upregulated), carbohydrate metabolism (upregulated), and response to biotic stimulus and stress (upregulated). The expressions of reactive oxygen species-generating enzymes as well as several mitogen-activated protein kinases were also significantly induced. Accordingly, synergistic infection induced a severe oxidative stress in N. benthamiana leaves, as judged by increases in lipid peroxidation and by the generation of superoxide radicals in chloroplasts, which correlated with the misregulation of antioxidative genes in microarray data. Interestingly, expression of genes encoding oxylipin biosynthesis was uniquely upregulated by the synergistic infection. Virus-induced gene silencing of alpha-dioxygenase1 delayed cell death during PVX-PVY infection.


Assuntos
Regulação Viral da Expressão Gênica/fisiologia , Doenças das Plantas/virologia , Potexvirus , Potyvirus , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Estresse Oxidativo , Folhas de Planta/virologia , Análise Serial de Proteínas , Nicotiana/virologia , Transcrição Gênica
7.
Mol Immunol ; 44(9): 2426-35, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17123606

RESUMO

Caribbean Islands including Cuba were first inhabited by Meso-American and later by Arawak-speaking Amerindians from nowadays Venezuela. Spanish invaders brought to almost extinction to the Amerindian population after 1492. Black slaves from West Africa were taken into Cuba by Europeans. The degree of admixture among populations is approached. HLA alleles were studied by DNA techniques. Comparison with other worldwide populations (a total of 14.094 chromosomes) included genetic distances, Neighbour-Joining dendrograms, correspondence analyses and calculation of extended haplotypes. While African-European HLA features were clearly found, Amerindian HLA characteristics are less evident, indicating that Amerindian devastation was particularly marked after 1492 AD. However, typical Amerindian alleles have been found in our Cuban sample, i.e. DRB1*0403, DRB1*0404, DRB1*0407, DRB1*0411, DRB1*0802 and DRB1*1602. The presence of Amerindian alleles in Cubans [corrected] may have a bear in the making up of transplantation registries (both for bone marrow and solid organ transplantation) at the regional level and also be important for epidemiological studies of diseases linked to HLA.


Assuntos
Alelos , Genes MHC da Classe II/genética , Genes MHC Classe I/genética , Indígenas Norte-Americanos/genética , Povo Asiático/genética , População Negra/genética , Cuba/etnologia , Frequência do Gene , Geografia , Haplótipos/genética , Humanos , Inuíte/genética , Filogenia , População Branca/genética
8.
Virus Res ; 165(2): 231-5, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22387565

RESUMO

In comparison to single infections, co-infection of Nicotiana benthamiana with Potato virus X (PVX) and Potato virus Y (PVY) or Plum pox virus (PPV), resulted in increased systemic symptoms (synergism in pathology). Previous studies have shown that virus infections affected the accumulation of various microRNAs (miRNAs) and miRNA target genes. Our studies revealed that double infection by PVX and PVY or PPV that produced the most severe symptoms in N. benthamiana altered accumulation of miR156, 171, 398, and 168, and/or their target transcripts to a greater extent or in a different direction than single infections that produced milder symptoms. These findings indicate a differential effect on miRNA metabolism of the combined infection by two unrelated plant viruses, which may account in part for the severe symptoms caused by PVX/potyvirus-associated synergisms.


Assuntos
MicroRNAs/metabolismo , Nicotiana/virologia , Doenças das Plantas/virologia , Potexvirus/patogenicidade , Potyvirus/patogenicidade , Coinfecção/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA