Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Leukemia ; 17(12): 2418-25, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14562121

RESUMO

Previously, we showed that expression of myeloma-associated (proto)oncogene fibroblast growth factor receptor 3 (FGFR-3) is increased in white blood cells from patients with chronic myeloid leukemia (CML). The abnormal expression was returned back to the normal levels as soon as these patients reconstituted their hematopoiesis following transplantation of allogeneic peripheral blood stem cells. The aims of this study were: (1) to define population(s) of cells overexpressing FGFR-3, and (2) to determine the expression of FGFR-3 during the clinical course of the disease. We show that the vast majority of FGFR-3 transcripts as well as FGFR-3 protein arise from CD34+ BCR-ABL+ cells. Although increased levels of FGFR-3 were found in majority of late chronic phase patients treated with interferon alpha or hydroxyurea, the expression of FGFR-3 was always lowered following treatment with BCR-ABL tyrosine kinase inhibitor STI571. Compared to unstimulated cells, high levels of FGFR-3 were also identified in CD34+ cells from granulocyte colony-stimulating factor-mobilized blood stem cell harvests from healthy donors, suggesting a potential growth factor-dependent basis for elevated expression of FGFR-3 in CML. These findings have implications for the involvement of FGFR-3 in malignant hematopoiesis and depict FGFR-3 tyrosine kinase in CD34+ leukemic cells as a possible target for tyrosine kinase inhibitors.


Assuntos
Proteínas de Fusão bcr-abl/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/fisiopatologia , Proteínas Tirosina Quinases , Receptores de Fatores de Crescimento de Fibroblastos/genética , Antígenos CD34/análise , Diferenciação Celular , Divisão Celular , Citometria de Fluxo , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos/farmacologia , Hematopoese , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/química , Células-Tronco Hematopoéticas/citologia , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Proto-Oncogene Mas , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos
2.
Int J Dev Biol ; 43(6): 555-62, 1999 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10610028

RESUMO

During development, fibroblast growth factors (FGFs) serve highly specific functions that are mediated through high-affinity transmembrane receptors and modulated by membrane-bound proteoglycans. Proteoglycans, in an embryonic environment called embryoglycans, contain numerous carbohydrate ectodomains, the structure of which undergoes rearrangement. Since they can be lost from the cell surface, they are sometimes found in extracellular space where they may also serve some regulatory function. Here we address the potential roles of three naturally occurring isoforms of Lewis X (LeX) in FGF-2-mediated proliferation of embryonic stem (ES) cells. We have found that the addition of sulfated LeX to ES cells at a concentration of 17 nM promotes FGF-2 mitogenic activity while a 10-fold higher concentration leads to a reduction of FGF-2-mediated proliferation. Notably, this dose-dependent modulation operated only for sulfated LeX. Other fucosylated motifs, basic LeX trisaccharide and sialylated LeX, also affected ES cell proliferation but the mechanism cannot be clearly correlated with the presence or absence of FGF-2. The suppression of biosynthesis of O-linked carbohydrates including LeX reduced basal proliferation of ES cells and interfered with the mitogenic effect of FGF-2. However, in inhibitor-treated cells, the stimulatory activity of FGF-2 can be reestablished to its original level by exogenous LeX oligosaccharides. Our results show that (A) O-linked LeX oligosaccharides can regulate mitogenic activity of FGF-2 in embryonic cells, (B) and this ability varies with subtle modifications in their structure. Importantly, our data represent the first insight into the mechanism of how growth factor activities might be modulated by shedded embryoglycan ectodomains.


Assuntos
Embrião de Mamíferos/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Antígenos CD15/metabolismo , Proteoglicanas/metabolismo , Animais , Divisão Celular/fisiologia , Células Cultivadas , Embrião de Mamíferos/citologia , Feminino , Immunoblotting , Camundongos , Camundongos Endogâmicos , Gravidez , Proteoglicanas/biossíntese , Receptores Proteína Tirosina Quinases/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco/metabolismo , Útero/metabolismo
3.
Cloning Stem Cells ; 3(3): 157-61, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11945225

RESUMO

Ubiquitination is a universal protein degradation pathway in which the molecules of 8.5-kDa proteolytic peptide ubiquitin are covalently attached to the epsilon-amino group of the substrate's lysine residues. Little is known about the importance of this highly conserved mechanism for protein recycling in mammalian gametogenesis and fertilization. The data obtained by the students and faculty of the international training course Window to the Zygote 2000 demonstrate the accumulation of ubiquitin-cross-reactive structures in the trophoblast, but not in the inner cell mass of the expanding bovine and mouse blastocysts. This observation suggests that a major burst of ubiquitin-dependent proteolysis occurs in the trophoblast of mammalian peri-implantation embryos. This event may be important for the success of blastocyst hatching, differentiation of embryonic stem cells into soma and germ line, and/or implantation in both naturally conceived and reconstructed mammalian embryos.


Assuntos
Mamíferos/embriologia , Trofoblastos/metabolismo , Ubiquitina/metabolismo , Animais , Biomarcadores/análise , Blastocisto/metabolismo , Bovinos , Células Cultivadas , Camundongos , Camundongos Endogâmicos ICR
4.
J Cell Sci ; 111 ( Pt 19): 2945-52, 1998 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9730986

RESUMO

Basic fibroblast growth factor (FGF-2) functions as a natural inducer of mesoderm, regulator of cell differentiation and autocrine modulator of cell growth and transformation. The FGF-2 signals are transduced through receptors with intrinsic protein tyrosine kinase activity. However, receptor binding and activation is governed by extracellular matrix, cell surface or soluble proteoglycans. This paper focuses on the role of proteoglycans synthesized by embryonic cells, embryoglycans, in FGF-2 signaling via FGF receptor-1 (FGFR-1). We found that embryoglycan ectodomain Lewis X, analog of developmentally regulated embryonic cell surface epitope TEC 1, promotes oligomerization of FGF-2 in the cell free chemical crosslinking. In vitro assays show that a large molar excess of extracellular Lewis X does not inhibit binding of FGF-2 to embryonic stem (ES) cells, but prevents the mitogenic effect of FGF-2. Western blot analysis of ES cells revealed the presence of abundant 52 kDa and trace amounts of 67 and 125 kDa isoforms of FGFR-1. However, none of these isoforms undergo any detectable changes in tyrosine phosphorylation under the conditions that modulate the mitogenic effect of FGF-2. Rather, a primary substrate of all receptor tyrosine kinases, phospholipase C gamma (PLC gamma), is activated by both FGF-2 and Lewis X. The combination, FGF-2 plus Lewis X, leads to weak inhibition, when compared with the effects of FGF-2 and Lewis X, respectively. In accordance, the level of phosphorylation of non-receptor tyrosine kinase c-Src is reduced in a reversed pattern to PLC(gamma). Furthermore, in this particular cell type we show the presence of activated forms of extracellular signal-related kinase (ERK) in all nontreated and treated cells. These findings demonstrate that embryoglycan ectodomains may act as negative regulators of FGF-2-induced ES cell proliferation, most likely through the FGFR-1-independent signaling pathway.


Assuntos
Fator 2 de Crescimento de Fibroblastos/metabolismo , Polissacarídeos/metabolismo , Proteoglicanas/metabolismo , Receptores Proteína Tirosina Quinases , Células-Tronco/metabolismo , Animais , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Reagentes de Ligações Cruzadas , Fator 2 de Crescimento de Fibroblastos/química , Fator 2 de Crescimento de Fibroblastos/farmacologia , Isoenzimas/metabolismo , Antígenos CD15/metabolismo , Antígenos CD15/farmacologia , Camundongos , Fosfolipase C gama , Fosforilação , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Fosfolipases Tipo C/metabolismo , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA