Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Brain ; 136(Pt 10): 3106-18, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24030952

RESUMO

Many neurological conditions are caused by immensely heterogeneous gene mutations. The diagnostic process is often long and complex with most patients undergoing multiple invasive and costly investigations without ever reaching a conclusive molecular diagnosis. The advent of massively parallel, next-generation sequencing promises to revolutionize genetic testing and shorten the 'diagnostic odyssey' for many of these patients. We performed a pilot study using heterogeneous ataxias as a model neurogenetic disorder to assess the introduction of next-generation sequencing into clinical practice. We captured 58 known human ataxia genes followed by Illumina Next-Generation Sequencing in 50 highly heterogeneous patients with ataxia who had been extensively investigated and were refractory to diagnosis. All cases had been tested for spinocerebellar ataxia 1-3, 6, 7 and Friedrich's ataxia and had multiple other biochemical, genetic and invasive tests. In those cases where we identified the genetic mutation, we determined the time to diagnosis. Pathogenicity was assessed using a bioinformatics pipeline and novel variants were validated using functional experiments. The overall detection rate in our heterogeneous cohort was 18% and varied from 8.3% in those with an adult onset progressive disorder to 40% in those with a childhood or adolescent onset progressive disorder. The highest detection rate was in those with an adolescent onset and a family history (75%). The majority of cases with detectable mutations had a childhood onset but most are now adults, reflecting the long delay in diagnosis. The delays were primarily related to lack of easily available clinical testing, but other factors included the presence of atypical phenotypes and the use of indirect testing. In the cases where we made an eventual diagnosis, the delay was 3-35 years (mean 18.1 years). Alignment and coverage metrics indicated that the capture and sequencing was highly efficient and the consumable cost was ∼£400 (€460 or US$620). Our pathogenicity interpretation pathway predicted 13 different mutations in eight different genes: PRKCG, TTBK2, SETX, SPTBN2, SACS, MRE11, KCNC3 and DARS2 of which nine were novel including one causing a newly described recessive ataxia syndrome. Genetic testing using targeted capture followed by next-generation sequencing was efficient, cost-effective, and enabled a molecular diagnosis in many refractory cases. A specific challenge of next-generation sequencing data is pathogenicity interpretation, but functional analysis confirmed the pathogenicity of novel variants showing that the pipeline was robust. Our results have broad implications for clinical neurology practice and the approach to diagnostic testing.


Assuntos
Ataxia/genética , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Mutação/genética , Idade de Início , Ataxia/diagnóstico , Genes Recessivos/genética , Predisposição Genética para Doença , Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Técnicas de Diagnóstico Molecular
2.
Ophthalmic Genet ; 41(4): 331-337, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32543920

RESUMO

INTRODUCTION: Diagnostic next generation sequencing (NGS) services for patients with inherited retinal diseases (IRD) traditionally use gene panel based approaches, which have cost and resource implications. Phenotype-based gene panels use a targeted strategy with further testing protocols, if initial results are negative. We present the molecular findings of the Oxford phenotype-based NGS panels for genetic testing in IRD. METHODS: Results of 655 consecutive patients referred for phenotype-based panel testing over 54 months were analysed to assess diagnostic yield. RESULTS: Variants were identified in 450 patients (68.7%). The overall diagnostic yield from phenotype-based panels was 42.8%. The diagnostic yield was highest from panels representing distinct clinical phenotypes: Usher panel 90.9% and congenital stationary night blindness panel 75.0%. Retinitis pigmentosa/rod-cone dystrophy was the commonest presenting phenotype (n = 243) and Usher syndrome was the commonest presenting syndromic disease (n = 39). Patients presenting with late-onset (≥50 years) macular disease had a lower diagnostic yield (18.0%) compared with patients <50 years (24.2%). Additionally, a diagnostic yield of 1.8% was attributable to copy number variants. CONCLUSIONS: Phenotype-based genetic testing panels provide a targeted testing approach and reduce bioinformatics demand. The overall diagnostic yield achieved in this study reflects the wide range of phenotypes that were referred. This pragmatic approach provides a high yield for early-onset and clearly defined genetically determined disorders but clinical utility is not as clear for late-onset macular disorders. This phenotype-based panel approach is clinician-referrer orientated, and can be used as a front-end virtual panel, when whole genome sequencing is introduced into diagnostic services for IRD.


Assuntos
Proteínas do Olho/genética , Predisposição Genética para Doença , Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Fenótipo , Doenças Retinianas/genética , Doenças Retinianas/patologia , Variações do Número de Cópias de DNA , Feminino , Estudos de Associação Genética , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Doenças Retinianas/classificação
3.
Acta Ophthalmol ; 97(6): 633-636, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30690895

RESUMO

Choroideremia is an X-linked recessive retinal degeneration predominantly affecting hemizygous males. It is caused by mutations in the CHM gene that encodes the Rab escort protein-1. Characteristic features include early nyctalopia followed by progressive constriction of peripheral visual fields and sparing of the central vision until late in life with a distinct fundoscopic appearance. We present the case of a 17-year-old male with a c.282delT in exon 4 of CHM that has not previously been reported. Phenotypically this patient presented with an atypical choroideremia phenotype of early central macular degeneration in addition to the classic peripheral fundus characteristic findings.


Assuntos
Corioide/patologia , Coroideremia/complicações , Degeneração Retiniana/etiologia , Acuidade Visual , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adolescente , Coroideremia/diagnóstico , Coroideremia/genética , DNA/genética , Diagnóstico Diferencial , Humanos , Masculino , Mutação , Linhagem , Fenótipo , Degeneração Retiniana/diagnóstico , Tomografia Óptica , Tomografia de Coerência Óptica/métodos
4.
Eur J Hum Genet ; 21(3): 274-80, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22968130

RESUMO

Inherited retinal degeneration (IRD) is a common cause of visual impairment (prevalence ∼1/3500). There is considerable phenotype and genotype heterogeneity, making a specific diagnosis very difficult without molecular testing. We investigated targeted capture combined with next-generation sequencing using Nimblegen 12plex arrays and the Roche 454 sequencing platform to explore its potential for clinical diagnostics in two common types of IRD, retinitis pigmentosa and cone-rod dystrophy. 50 patients (36 unknowns and 14 positive controls) were screened, and pathogenic mutations were identified in 25% of patients in the unknown, with 53% in the early-onset cases. All patients with new mutations detected had an age of onset <21 years and 44% had a family history. Thirty-one percent of mutations detected were novel. A de novo mutation in rhodopsin was identified in one early-onset case without a family history. Bioinformatic pipelines were developed to identify likely pathogenic mutations and stringent criteria were used for assignment of pathogenicity. Analysis of sequencing metrics revealed significant variability in capture efficiency and depth of coverage. We conclude that targeted capture and next-generation sequencing are likely to be very useful in a diagnostic setting, but patients with earlier onset of disease are more likely to benefit from using this strategy. The mutation-detection rate suggests that many patients are likely to have mutations in novel genes.


Assuntos
Mutação , Degeneração Retiniana/diagnóstico , Degeneração Retiniana/genética , Análise de Sequência de DNA/métodos , Idade de Início , Humanos , Degeneração Retiniana/epidemiologia , Retinose Pigmentar/diagnóstico , Retinose Pigmentar/genética , Rodopsina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA