Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Synth Biol ; 12(10): 2934-2946, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37721978

RESUMO

Valorization, the process whereby waste materials are converted into more valuable products, is rarely practiced in industrial fermentation. We developed a model valorization system whereby Saccharomyces cerevisiae that had previously been engineered to produce high concentrations (>100 g/L) of extracellular ß-farnesene was further engineered to simultaneously produce intracellular carotenoids, both products being isoprenoids. Thus, a single fermentation generates two valuable products, namely, ß-farnesene in the liquid phase and carotenoids in the solid biomass phase. Initial attempts to produce high levels of canthaxanthin (a ketocarotenoid used extensively in animal feed) in a ß-farnesene production strain negatively impacted both biomass growth and ß-farnesene production. A refined approach used a promoter titration strategy to reduce ß-carotene production to a level that had minimal impact on growth and ß-farnesene production in fed-batch fermentations and then engineered the resulting strain to produce canthaxanthin. Further optimization of canthaxanthin coproduction used a bioprospecting approach to identify ketolase enzymes that maximized conversion of ß-carotene to canthaxanthin. Finally, we demonstrated that ß-carotene is not present in the extracellular ß-farnesene at a significant concentration and that which is present can be removed by a simple distillation, indicating that ß-farnesene (the primary fermentation product) purity is unaffected by coproduction of carotenoids.


Assuntos
Carotenoides , beta Caroteno , Saccharomyces cerevisiae , Cantaxantina , Biomassa
2.
NPJ Vaccines ; 8(1): 14, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797262

RESUMO

Synthetic biology has allowed for the industrial production of supply-limited sesquiterpenoids such as the antimalarial drug artemisinin and ß-farnesene. One of the only unmodified animal products used in medicine is squalene, a triterpenoid derived from shark liver oil, which when formulated into an emulsion is used as a vaccine adjuvant to enhance immune responses in licensed vaccines. However, overfishing is depleting deep-sea shark populations, leading to potential supply problems for squalene. We chemically generated over 20 squalene analogues from fermentation-derived ß-farnesene and evaluated adjuvant activity of the emulsified compounds compared to shark squalene emulsion. By employing a desirability function approach that incorporated multiple immune readouts, we identified analogues with enhanced, equivalent, or decreased adjuvant activity compared to shark squalene emulsion. Availability of a library of structurally related analogues allowed elucidation of structure-function relationships. Thus, combining industrial synthetic biology with chemistry and immunology enabled generation of sustainable terpenoid-based vaccine adjuvants comparable to current shark squalene-based adjuvants while illuminating structural properties important for adjuvant activity.

3.
Org Process Res Dev ; 27(12): 2317-2328, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38524776

RESUMO

Emulsions of the triterpene squalene ((6E,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene, CAS 111-02-4) have been used as adjuvants in influenza vaccines since the 1990s. Traditionally sourced from shark liver oil, the overfishing of sharks and concomitant reduction in the oceanic shark population raises sustainability issues for vaccine adjuvant grade squalene. We report a semisynthetic route to squalene meeting current pharmacopeial specifications for use in vaccines that leverages the ready availability of trans-ß-farnesene ((6E)-7,11-dimethyl-3-methylene-1,6,10-dodecatriene, CAS 18794-84-8), manufactured from sustainable sugarcane via a yeast fermentation process. The scalability of the proposed route was verified by a kilo-scale GMP synthesis. We also report data demonstrating the synthesized semi-synthetic squalene's physical stability and biological activity when used in a vaccine adjuvant formulation.

4.
NPJ Vaccines ; 7(1): 136, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323666

RESUMO

mRNA vaccines were the first to be authorized for use against SARS-CoV-2 and have since demonstrated high efficacy against serious illness and death. However, limitations in these vaccines have been recognized due to their requirement for cold storage, short durability of protection, and lack of access in low-resource regions. We have developed an easily-manufactured, potent self-amplifying RNA (saRNA) vaccine against SARS-CoV-2 that is stable at room temperature. This saRNA vaccine is formulated with a nanostructured lipid carrier (NLC), providing stability, ease of manufacturing, and protection against degradation. In preclinical studies, this saRNA/NLC vaccine induced strong humoral immunity, as demonstrated by high pseudovirus neutralization titers to the Alpha, Beta, and Delta variants of concern and induction of bone marrow-resident antibody-secreting cells. Robust Th1-biased T-cell responses were also observed after prime or homologous prime-boost in mice. Notably, the saRNA/NLC platform demonstrated thermostability when stored lyophilized at room temperature for at least 6 months and at refrigerated temperatures for at least 10 months. Taken together, this saRNA delivered by NLC represents a potential improvement in RNA technology that could allow wider access to RNA vaccines for the current COVID-19 and future pandemics.

6.
PLoS One ; 4(2): e4489, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19221601

RESUMO

BACKGROUND: Artemisinin derivatives are the key active ingredients in Artemisinin combination therapies (ACTs), the most effective therapies available for treatment of malaria. Because the raw material is extracted from plants with long growing seasons, artemisinin is often in short supply, and fermentation would be an attractive alternative production method to supplement the plant source. Previous work showed that high levels of amorpha-4,11-diene, an artemisinin precursor, can be made in Escherichia coli using a heterologous mevalonate pathway derived from yeast (Saccharomyces cerevisiae), though the reconstructed mevalonate pathway was limited at a particular enzymatic step. METHODOLOGY/ PRINCIPAL FINDINGS: By combining improvements in the heterologous mevalonate pathway with a superior fermentation process, commercially relevant titers were achieved in fed-batch fermentations. Yeast genes for HMG-CoA synthase and HMG-CoA reductase (the second and third enzymes in the pathway) were replaced with equivalent genes from Staphylococcus aureus, more than doubling production. Amorpha-4,11-diene titers were further increased by optimizing nitrogen delivery in the fermentation process. Successful cultivation of the improved strain under carbon and nitrogen restriction consistently yielded 90 g/L dry cell weight and an average titer of 27.4 g/L amorpha-4,11-diene. CONCLUSIONS/ SIGNIFICANCE: Production of >25 g/L amorpha-4,11-diene by fermentation followed by chemical conversion to artemisinin may allow for development of a process to provide an alternative source of artemisinin to be incorporated into ACTs.


Assuntos
Anti-Infecciosos/metabolismo , Antimaláricos/metabolismo , Artemisininas/metabolismo , Escherichia coli/metabolismo , Sesquiterpenos/metabolismo , Acetatos/metabolismo , Amônia/metabolismo , Anti-Infecciosos/uso terapêutico , Antimaláricos/uso terapêutico , Pré-Escolar , Escherichia coli/genética , Fermentação , Glucose/metabolismo , Humanos , Malária Falciparum/tratamento farmacológico , Ácido Mevalônico/metabolismo , Óperon , Sesquiterpenos Policíclicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA