Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Carbon N Y ; 193: 1-16, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35463198

RESUMO

Due to the numerous failed clinical trials of anti-amyloid drugs, microtubule associated protein tau (MAPT) now stands out as one of the most promising targets for AD therapy. In this study, we report for the first time the structure-dependent MAPT aggregation inhibition of carbon nitride dots (CNDs). CNDs have exhibited great promise as a potential treatment of Alzheimer's disease (AD) by inhibiting the aggregation of MAPT. In order to elucidate its structure-activity relationship, CNDs were separated via column chromatography and five fractions with different structures were obtained that were characterized by multiple spectroscopy methods. The increase of surface hydrophilic functional groups is consistent with the increase of polarity from fraction 1 to 5. Particle sizes (1-2 nm) and zeta potentials (~-20 mV) are similar among five fractions. With the increase of polarity from fraction 1 to 5, their MAPT aggregation inhibition capacity was weakened. This suggests hydrophobic interactions between CNDs and MAPT, validated via molecular dynamics simulations. With a zebrafish blood-brain barrier (BBB) model, CNDs were observed to cross the BBB through passive diffusion. CNDs were also found to inhibit the generation of multiple reactive oxygen species, which is an important contributor to AD pathogenesis.

2.
Polymers (Basel) ; 14(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35160416

RESUMO

The development of 3D printed composites showing increased stiffness and strength thanks to the use of continuous carbon fibers has offered new prospects for Fused Filament Fabrication (FFF) technique. This work aims to investigate the microstructure and mechanical properties of 3D printed CCF/PA composites with various layups, and also to apply predictive models. The mechanical properties of the printed parts were directly related to the adopted laminate layup as well as to the microstructure and defects induced by the FFF process. The highest stiffness and strength were reported for longitudinal composites, where the fibers are unidirectionally aligned in the loading direction. In addition, it was found that the reduction in tensile properties obtained for cross-ply and quasi-isotropic laminate layups can be described by using the Angle Minus Longitudinal. A step-like failure with extensive fibers breakage and pull-out was observed for the longitudinal composites. By contrast, the rupture mode of the quasi-isotropic laminates mainly exhibited debonding between beads. Moreover, the predictions obtained using the Volume Average Stiffness method and Classical Laminate Theory were in good agreement with the tensile test results. This work could help engineers to design complex laminates with specific mechanical requirements by tailoring the orientation of continuous carbon fibers.

4.
Materials (Basel) ; 15(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35009332

RESUMO

Selective laser sintering (SLS) is a powder bed fusion technology that uses a laser source to melt selected regions of a polymer powder bed based on 3D model data. Components with complex geometry are then obtained using a layer-by-layer strategy. This additive manufacturing technology is a very complex process in which various multiphysical phenomena and different mechanisms occur and greatly influence both the quality and performance of printed parts. This review describes the physical phenomena involved in the SLS process such as powder spreading, the interaction between laser beam and powder bed, polymer melting, coalescence of fused powder and its densification, and polymer crystallization. Moreover, the main characterization approaches that can be useful to investigate the starting material properties are reported and discussed.

5.
Nanomaterials (Basel) ; 10(9)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899319

RESUMO

In this research, an innovative procedure is proposed to elaborate Raman spectra obtained from nanostructured and disordered solids. As a challenging case study, biochar, a bio-derived carbon based material, was selected. The complex structure of biochar (i.e., channeled surface, inorganic content) represents a serious challenge for Raman characterization. As widely reported, the Raman spectra are closely linked to thermal treatments of carbon material. The individual contributions to the Raman spectra are difficult to identify due to the numerous peaks that contribute to the spectra. To tackle this problem, we propose a brand new approach based on the introduction, on sound theoretical grounds, of a mixed Gaussian--Lorentzian lineshape. As per the experimental part, biochar samples were carbonized in an inert atmosphere at various temperatures and their respective spectra were successfully decomposed using the new lineshape. The evolution of the structure with carbonization temperature was investigated by Raman and XRD analysis. The results of the two techniques fairly well agree. Compared to other approaches commonly reported in the literature this method (i) gives a sounder basis to the lineshape used in disordered materials, and (ii) appears to reduce the number of components, leading to an easier understanding of their origin.

6.
Materials (Basel) ; 12(9)2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31075928

RESUMO

Electrical and thermal conductivity of composites which contain carbon-based fillers in an epoxy matrix were investigated. The fillers were dispersed in the liquid matrix by using three roll mill equipment. The filler/matrix mixture was cast in a mold and then cured, thus obtaining composite specimens. Multiwall carbon nanotubes, graphene-like nanoplatelets, and graphite were used as fillers and their effect on conductivity was investigated. Electrical and thermal conductivity were measured at different filler loads. It was found that the formation of percolation paths greatly enhanced electrical conductivity, although they were not so effective in improving thermal conductivity. The behavior of composites containing each single filler was compared with that of hybrid composites containing combinations of two different fillers. Results show that fillers with different aspect ratios displayed a synergetic effect resulting in a noticeable improvement of electrical conductivity. However, only a small effect on thermal conductivity was observed.

7.
Micromachines (Basel) ; 10(1)2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30669252

RESUMO

The effect of carbon nanotubes, graphene-like platelets, and another carbonaceous fillers of natural origin on the electrical conductivity of polymeric materials was studied. With the aim of keeping the filler content and the material cost as low as possible, the effect of laser surface treatments on the conductivity of polymer composites with filler load below the percolation threshold was also investigated. These treatments allowed processing in situ conductive tracks on the surface of insulating polymer-based materials. The importance of the kinds of fillers and matrices, and of the laser process parameters was studied. Carbon nanotubes were also used to obtain piezoresistive composites. The electrical response of these materials to a mechanical load was investigated in view of their exploitation for the production of pressure sensors and switches based on the piezoresistive effect. It was found that the piezoresistive behavior of composites with very low filler concentration can be improved with proper laser treatments.

8.
J Appl Biomater Funct Mater ; 16(1): 14-22, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29027180

RESUMO

BACKGROUND: Silicon carbide ceramics obtained by reactive infiltration of silicon (SRI) have many industrial applications especially involving severe and high temperature conditions. In this study, the oxidation behavior in air of Si-SiC-ZrB2 systems at a high temperature (1500°C) for dwelling times of up to 48 hours was examined. METHODS: The oxidation process was analyzed on the basis of elemental maps and X-ray diffraction patterns taken, respectively, on the core and on the surface of the specimens, together with weight gains and the average thicknesses of the resulting scale. Further, flexural strength at room temperature was examined as a function of different oxidation times. RESULTS: The main chemical reactions and phase transformations involved in the oxidation process are reported. Several oxides were detected on the surface: zirconia, silica, zircon and 3-zirconium monoxide. All of the samples showed a parabolic oxidation kinetics, suggesting that the controlling mechanism was the diffusion; however, even after 48 hours, the oxidation process was not finished - indeed, all of the samples continued to gain weight. CONCLUSIONS: The oxidation of Si-SiC-ZrB2 material produced via SRI was slower compared with previously investigated ZrB2-SiC composites processed with a different techniques and tested in similar conditions. The oxidation mechanism was found to be consistent with the convection cells model.


Assuntos
Compostos de Boro/química , Compostos Inorgânicos de Carbono/química , Compostos de Silício/química , Silício/química , Zircônio/química , Temperatura Alta , Oxirredução
9.
Materials (Basel) ; 11(1)2017 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-29278355

RESUMO

In the current work, a novel magnesium alloy Elektron21 reinforced by ceramic AlN nanoparticles were produced by an ultrasound-assisted casting. The fabricated nanocomposites were investigated to evaluate their microstructure, hardness, physical, thermal and electrical conductivity. The microstructural evolutions show that a uniform dispersion of the ceramic particles within the matrix can be achieved by employing the ultrasound-assisted stirring. However, some nanoparticles were found to be pushed by the solidification front. According to the Vickers hardness results, the addition of AlN nanoparticles results in a slight improvement of the mechanical properties of the nanocomposites. What is surprising is that both electrical and thermal conductivity of the nanocomposite were improved significantly as a consequence of AlN addition. This improvement in the conductivity characteristics of the nanocomposite is mainly corresponding to the structural effect of nanoparticles within the matrix.

10.
Materials (Basel) ; 10(12)2017 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-29207461

RESUMO

In the present study, the solution and ageing treatments behavior of Mg-RE-Zr-Zn alloy (Elektron21) and its nano-AlN reinforced nanocomposites have been evaluated. The properties of the thermal-treated materials were investigated in terms of Vickers hardness, the area fraction of precipitates, microstructure and phase composition. The solution treatments were performed by treating at 520 °C, 550 °C and 580 °C in argon atmosphere. The outcomes show that the hardness of the solutionized alloys was slightly affected by the solution temperature. X-ray diffraction and image analysis revealed that the complete dissolution of precipitates was not possible, neither for Elektron21 (El21) nor for its AlN containing nanocomposites. The ageing treatment of El21 led to a significant improvement in hardness after 20 h, while for longer times, it progressively decreased. The effect of ageing on the hardness of El21-AlN composites was found to be much less than this effect on the hardness of the host alloy. Electron backscatter diffraction (EBSD) analysis of El21 and El21-1%AlN after solution treatment confirm the random orientation of grains with a typical texture of random distribution. The as-cast creep results showed that the incorporation of nanoparticles could effectively improve the creep properties, while the results after solution treatment at 520 °C for 12 h followed by ageing treatment at 200 °C for 20 h confirmed that the minimum creep rate of T6-El21 was almost equal to the as-cast El21-AlN.

11.
Materials (Basel) ; 9(12)2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-28774082

RESUMO

A High Power Impulse Magnetron Sputtering (HiPIMS) method for depositing TiAlN environmental barrier coatings on the surface of Ti-48Al-2Cr-2Nb alloy was developed in view of their exploitation in turbine engines. Three differently engineered TiAlN films were processed and their performance compared. Bare intermetallic alloy coupons and coated specimens were submitted to thermal cycling under oxidizing atmosphere up to 850 °C or 950 °C, at high heating and cooling rates. For this purpose, a burner rig able to simulate the operating conditions of the different stages of turbine engines was used. Microstructures of the samples were compared before and after each test using several techniques (microscopy, XRD, and XPS). Coating-intermetallic substrate adhesion and tribological properties were investigated too. All the TiAlN films provided a remarkable increase in oxidation resistance. Good adhesion properties were observed even after repeated thermal shocks. HiPIMS pretreatments of the substrate surfaces performed before the coating deposition significantly affected the oxidation rate, the oxide layer composition and the coating/substrate adhesion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA