RESUMO
Loss of tear homeostasis, characterized by hyperosmolarity of the ocular surface, induces cell damage through inflammation and oxidation. Transient receptor potential vanilloid 1 (TRPV1), a sensor for osmotic changes, plays a crucial role as a calcium ion channel in the pathogenesis of hypertonic-related eye diseases. Capsaicin (CAP), a potent phytochemical, alleviates inflammation during oxidative stress events by activating TRPV1. However, the pharmacological use of CAP for eye treatment is limited by its pungency. Nitro dihydrocapsaicin (NDHC) was synthesized with aromatic ring modification of CAP structure to overcome the pungent effect. We compared the molecular features of NDHC and CAP, along with their biological activities in human corneal epithelial (HCE) cells, focusing on antioxidant and anti-inflammatory activities. The results demonstrated that NDHC maintained cell viability, cell shape, and exhibited lower cytotoxicity compared to CAP-treated cells. Moreover, NDHC prevented oxidative stress and inflammation in HCE cells following lipopolysaccharide (LPS) administration. These findings underscore the beneficial effect of NDHC in alleviating ocular surface inflammation, suggesting that NDHC may serve as an alternative anti-inflammatory agent targeting TRPV1 for improving hyperosmotic stress-induced ocular surface damage.
Assuntos
Capsaicina , Sobrevivência Celular , Epitélio Corneano , Lipopolissacarídeos , Estresse Oxidativo , Estresse Oxidativo/efeitos dos fármacos , Humanos , Lipopolissacarídeos/farmacologia , Epitélio Corneano/efeitos dos fármacos , Epitélio Corneano/metabolismo , Epitélio Corneano/patologia , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Canais de Cátion TRPV/metabolismo , Antioxidantes/farmacologia , Células Cultivadas , Ceratite/tratamento farmacológico , Ceratite/metabolismo , Ceratite/patologia , Espécies Reativas de Oxigênio/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismoRESUMO
Diabetic cataracts are a common complication that can cause blindness among patients with diabetes mellitus. A novel nitro dihydrocapsaicin (NDHC), a capsaicin analog, was constructed to have a non-pungency effect. The objective of this research was to study the effect of NDHC on human lens epithelial (HLE) cells that lost function from hyperglycemia. HLE cells were pretreated with NDHC before an exposure to high glucose (HG) conditions. The results show that NDHC promoted a deacceleration of cellular senescence in HLE cells. This inhibition of cellular senescence was characterized by a delayed cell growth and lower production of reactive oxygen species (ROS) as well as decreased SA-ß-galactosidase activity. Additionally, the expression of Sirt1 protein sharply increased, while the expression of p21 and phospho-p38 proteins decreased. These findings provide evidence that NDHC could exert a pharmacologically protective effect by inhibiting the senescence program of lens cells during diabetic cataracts.
Assuntos
Catarata , Sirtuína 1 , Humanos , Regulação para Cima , Sirtuína 1/genética , Capsaicina/farmacologia , Senescência Celular , Células EpiteliaisRESUMO
Following T-cell antigen receptor (TCR) engagement, rearrangement of the actin cytoskeleton supports intracellular signal transduction and T-cell activation. The non-catalytic region of the tyrosine kinase (Nck) molecule is an adapter protein implicated in TCR-induced actin polymerization. Further, Nck is recruited to the CD3ε subunit of the TCR upon TCR triggering. Here we examine the role of actin polymerization in the recruitment of Nck to the TCR. To this end, Nck binding to CD3ε was quantified in Jurkat cells using the proximity ligation assay. We show that inhibition of actin polymerization using cytochalasin D delayed the recruitment of Nck1 to the TCR upon TCR triggering. Interestingly, CD3ε phosphorylation was also delayed. These findings suggest that actin polymerization promotes the recruitment of Nck to the TCR, enhancing downstream signaling, such as phosphorylation of CD3ε.
Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Complexo CD3/metabolismo , Ativação Linfocitária , Proteínas Oncogênicas/metabolismo , Complexo Receptor-CD3 de Antígeno de Linfócitos T/metabolismo , Linfócitos T/enzimologia , Citoesqueleto de Actina/imunologia , Actinas/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Complexo CD3/imunologia , Citocalasina D/farmacologia , Humanos , Células Jurkat , Ativação Linfocitária/efeitos dos fármacos , Proteínas Oncogênicas/genética , Fosforilação , Polimerização , Ligação Proteica , Complexo Receptor-CD3 de Antígeno de Linfócitos T/genética , Complexo Receptor-CD3 de Antígeno de Linfócitos T/imunologia , Transdução de Sinais , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Fatores de Tempo , Proteína-Tirosina Quinase ZAP-70/metabolismoRESUMO
Ligand binding to the TCR causes a conformational change at the CD3 subunits to expose the CD3ε cytoplasmic proline-rich sequence (PRS). It was suggested that the PRS is important for TCR signaling and T cell activation. It has been shown that the purified, recombinant SH3.1 domain of the adaptor molecule noncatalytic region of tyrosine kinase (Nck) can bind to the exposed PRS of CD3ε, but the molecular mechanism of how full-length Nck binds to the TCR in cells has not been investigated so far. Using the in situ proximity ligation assay and copurifications, we show that the binding of Nck to the TCR requires partial phosphorylation of CD3ε, as it is based on two cooperating interactions. First, the SH3.1(Nck) domain has to bind to the nonphosphorylated and exposed PRS, that is, the first ITAM tyrosine has to be in the unphosphorylated state. Second, the SH2(Nck) domain has to bind to the second ITAM tyrosine in the phosphorylated state. Likewise, mutations of the SH3.1 and SH2 domains in Nck1 resulted in the loss of Nck1 binding to the TCR. Furthermore, expression of an SH3.1-mutated Nck impaired TCR signaling and T cell activation. Our data suggest that the exact pattern of CD3ε phosphorylation is critical for TCR functioning.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ativação Linfocitária/imunologia , Proteínas Oncogênicas/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Sítios de Ligação , Complexo CD3/metabolismo , Linhagem Celular Tumoral , Humanos , Células Jurkat , Proteínas Oncogênicas/genética , Fosforilação , Domínios Proteicos Ricos em Prolina , Ligação Proteica , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/imunologia , Domínios de Homologia de srcRESUMO
BACKGROUND: The engagement of the T cell receptor (TCR)-CD3 complex induces the formation of multiple signalling complexes, which are required for actin cytoskeletal rearrangement. The Wiskott-Aldrich syndrome protein (WASp) is a key regulator of actin polymerization that is recruited to the TCR activation site. Since WASp is a binding partner of adaptor protein Nck, which is recruited directly to the TCR CD3? subunit upon TCR ligation, therefore we proposed that the direct recruitment of Nck to TCR-CD3 may also bring WASp directly to TCR-CD3. OBJECTIVE: The aim of this present study was to assess the distribution of WASp, in relation to Nck, to the TCR-CD3ε complex. METHODS: Jurkat T cells were stimulated with anti-TCR antibody and then the cell lysates were immunoprecipitated with anti-CD3 antibody before immunoblotting with antibodies specific to WASp, Nck1, Nck2, SLP-76 and CD3ε molecules. RESULTS: WASp was recruited to SLP-76 and also directly to the TCR-CD3 complex upon TCR triggering. The inducible recruitment of WASp to the TCR-CD3 complex is partially dependent of tyrosine phosphorylation. CONCLUSIONS: The present findings provide an alternative mechanism of WASp recruitment to the site of TCR activation that may be involved in recruitment of Nck.
Assuntos
Complexo CD3/metabolismo , Complexo Receptor-CD3 de Antígeno de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Complexo CD3/imunologia , Humanos , Células Jurkat , Ativação Linfocitária , Proteínas Oncogênicas/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Ligação Proteica , Conformação Proteica , Transporte Proteico , Complexo Receptor-CD3 de Antígeno de Linfócitos T/imunologia , Transdução de Sinais , Linfócitos T/imunologia , Tirosina , Proteína da Síndrome de Wiskott-Aldrich/imunologiaRESUMO
BACKGROUND: Signalling by the T cell antigen receptor (TCR) results in the activation of T lymphocytes. Nck1 and Nck2 are two highly related adaptor proteins downstream of the TCR that each contains three SH3 and one SH2 domains. Their individual functions and the roles of their SH3 domains in human T cells remain mostly unknown. RESULTS: Using specific shRNA we down-regulated the expression of Nck1 or Nck2 to approximately 10% each in Jurkat T cells. We found that down-regulation of Nck1 impaired TCR-induced phosphorylation of the kinases Erk and MEK, activation of the AP-1 and NFAT transcription factors and subsequently, IL-2 and CD69 expression. In sharp contrast, down-regulation of Nck2 hardly impacts these activation read-outs. Thus, in contrast to Nck2, Nck1 is a positive regulator for TCR-induced stimulation of the Erk pathway. Mutation of the third SH3 domain of Nck1 showed that this domain was required for this activity. Further, TCR-induced NFAT activity was reduced in both Nck1 and Nck2 knock-down cells, showing that both isoforms are involved in NFAT activation. Lastly, we show that neither Nck isoform is upstream of p38 phosphorylation or Ca2+influx. CONCLUSIONS: In conclusion, Nck1 and Nck2 have non-redundant roles in human T cell activation in contrast to murine T cells.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ativação Linfocitária , Proteínas Oncogênicas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/genética , Antígenos de Diferenciação de Linfócitos T/metabolismo , Humanos , Interleucina-2/genética , Interleucina-2/metabolismo , Células Jurkat , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Sistema de Sinalização das MAP Quinases , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Proteínas Oncogênicas/química , Proteínas Oncogênicas/genética , Estrutura Terciária de Proteína , Receptores de Antígenos de Linfócitos T/metabolismo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismoRESUMO
The quinazolinone scaffold is found in natural products and biologically active compounds, including inflammatory inhibitors. Major proteins or enzymes involved in the inflammation process are regulated by the amount of gene expression. Quinazolinone derivatives were investigated and developed against the inflammatory genes cyclooxygenase-2 (COX-2), interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), and inducible nitric oxide synthase (iNOS) in the lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cell line. The mRNA expressions were measured using a real-time quantitative polymerase chain reaction (RT-qPCR). Quinazolinone compounds at 62.5 µM demonstrated anti-COX-2 and anti-IL-1ß mRNA expressions down to 0.50% and 3.10% gene expression, respectively, via inhibition of nuclear factor κB (NF-κB). Molecular docking was performed to explain the interaction between the binding site and the developed compounds as well as the structure-activity relationship of the quinazolinone moiety.
RESUMO
Binding of platelet-derived growth factor-BB (PDGF-BB) to its cognate receptor (PDGFR) promotes lens epithelial cell (LEC) proliferation and migration. After cataract surgery, these LEC behaviors have been proposed as an influential cause of posterior capsule opacification (PCO). Stimulated PDFGR undergoes dimerization and tyrosine phosphorylation providing docking sites for a SH2-domain-containing noncatalytic region of tyrosine kinase (Nck). Nck is an adaptor protein acting as a linker of the proximal and downstream signaling events. However, the functions of Nck1 protein in LEC have not been investigated so far. We reported here a crucial role of Nck1 protein in regulating PDGFR-mediated LEC activation using LEC with a silenced expression of Nck1 protein. The knockdown of Nck1 suppressed PDGF-BB-stimulated LEC proliferation and migration and disrupted the cell cycle progression especially G1/S transition. LEC lacking Nck1 protein failed to exhibit actin polymerization and membrane protrusions. The downregulation of Nck1 protein in LEC impaired PDGFR-induced phosphorylation of intracellular signaling proteins, including Erk1/2, Akt, CREB and ATF1, which resulted in inhibition of LEC responses. Therefore, these data suggest that the loss of Nck1 expression may disturb LEC activation and Nck1 may potentially be a drug target to prevent PCO and lens-related disease.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Becaplermina , Células Epiteliais/metabolismo , Proteínas Oncogênicas/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Opacificação da Cápsula/etiologia , Linhagem Celular , Proliferação de Células , Células Epiteliais/citologia , Inativação Gênica , Humanos , Cristalino/citologia , Proteínas Oncogênicas/genética , Fosforilação , Transdução de SinaisRESUMO
Bombyx mori silk fibroin (SF), from Nangnoi Srisaket 1 Thai strain, has shown potential for various biomedical applications such as wound dressing, a vascular patch, bone substitutes, and controlled release systems. The hemocompatibility of this SF is one of the important characteristics that have impacts on such applications. In this study, the hemocompatibility of Thai SF was investigated and its improvement by low molecular weight heparin (LMWH) immobilization was demonstrated. Endothelial cell proliferation on the SF and LMWH immobilized SF (Hep/SF) samples with or without fibroblast growth factor-2 (FGF-2) was also evaluated. According to hemocompatibility evaluation, Thai SF did not accelerate clotting time, excess stimulate complement and leukocyte activation, and was considered a non-hemolysis material compared to the negative control PTFE sheet. Platelet adhesion of SF film was comparable to that of the PTFE sheet. For hemocompatibility enhancement, LMWH was immobilized successfully and could improve the surface hydrophilicity of SF films. The Hep/SF films demonstrated prolonged clotting time and slightly lower complement and leukocyte activation. However, the Hep/SF films could not suppress platelet adhesion. The Hep/SF films demonstrated endothelial cell proliferation enhancement, particularly with FGF-2 addition. This study provides fundamental information for the further development of Thai SF as a hemocompatible biomaterial.
RESUMO
Signal transduction regulates the proper function of T cells in an immune response. Upon binding to its specific ligand associated with major histocompatibility complex (MHC) molecules on an antigen presenting cell, the T cell receptor (TCR) initiates intracellular signaling that leads to extensive actin polymerization. Wiskott-Aldrich syndrome protein (WASp) is one of the actin nucleation factors that is recruited to TCR microclusters, where it is activated and regulates actin network formation. Here we highlight the research that has focused on WASp-deficient T cells from both human and mice in TCR-mediated signal transduction. We discuss the role of WASp in proximal TCR signaling as well as in the Ras/Rac-MAPK (mitogen-activated protein kinase), PKC (protein kinase C) and Ca2+-mediated signaling pathways.
RESUMO
The T cell antigen receptor (TCR) is expressed on T cells, which orchestrate adaptive immune responses. It is composed of the ligand-binding clonotypic TCRαß heterodimer and the non-covalently bound invariant signal-transducing CD3 complex. Among the CD3 subunits, the CD3ε cytoplasmic tail contains binding motifs for the Src family kinase, Lck, and the adaptor protein, Nck. Lck binds to a receptor kinase (RK) motif and Nck binds to a proline-rich sequence (PRS). Both motifs only become accessible upon ligand binding to the TCR and facilitate the recruitment of Lck and Nck independently of phosphorylation of the TCR. Mutations in each of these motifs cause defects in TCR signaling and T cell activation. Here, we investigated the role of Nck in proximal TCR signaling by silencing both Nck isoforms, Nck1 and Nck2. In the absence of Nck, TCR phosphorylation, ZAP70 recruitment, and ZAP70 phosphorylation was impaired. Mechanistically, this is explained by loss of Lck recruitment to the stimulated TCR in cells lacking Nck. Hence, our data uncover a previously unknown cooperative interaction between Lck and Nck to promote optimal TCR signaling.