RESUMO
Macrophages (MΦ) are increasingly recognized as HIV-1 target cells involved in the pathogenesis and persistence of infection. Paradoxically, in vitro infection assays suggest that virus isolates are mostly T-cell-tropic and rarely MΦ-tropic. The latter are assumed to emerge under CD4+ T-cell paucity in tissues such as the brain or at late stage when the CD4 T-cell count declines. However, assays to qualify HIV-1 tropism use cell-free viral particles and may not fully reflect the conditions of in vivo MΦ infection through cell-to-cell viral transfer. Here, we investigated the capacity of viruses expressing primary envelope glycoproteins (Envs) with CCR5 and/or CXCR4 usage from different stages of infection, including transmitted/founder Envs, to infect MΦ by a cell-free mode and through cell-to-cell transfer from infected CD4+ T cells. The results show that most viruses were unable to enter MΦ as cell-free particles, in agreement with the current view that non-M-tropic viruses inefficiently use CD4 and/or CCR5 or CXCR4 entry receptors on MΦ. In contrast, all viruses could be effectively cell-to-cell transferred to MΦ from infected CD4+ T cells. We further showed that viral transfer proceeded through Env-dependent cell-cell fusion of infected T cells with MΦ targets, leading to the formation of productively infected multinucleated giant cells. Compared to cell-free infection, infected T-cell/MΦ contacts showed enhanced interactions of R5 M- and non-M-tropic Envs with CD4 and CCR5, resulting in a reduced dependence on receptor expression levels on MΦ for viral entry. Altogether, our results show that virus cell-to-cell transfer overcomes the entry block of isolates initially defined as non-macrophage-tropic, indicating that HIV-1 has a more prevalent tropism for MΦ than initially suggested. This sheds light into the role of this route of virus cell-to-cell transfer to MΦ in CD4+ T cell rich tissues for HIV-1 transmission, dissemination and formation of tissue viral reservoirs.
Assuntos
Infecções por HIV , HIV-1 , Antígenos CD4/metabolismo , Linfócitos T CD4-Positivos , Infecções por HIV/metabolismo , HIV-1/metabolismo , Humanos , Macrófagos/metabolismo , Receptores CCR5/metabolismo , Internalização do VírusRESUMO
Human adipose-derived stem/stromal cells (hASCs) can differentiate into specialized cell types and thereby contribute to tissue regeneration. As such, hASCs have drawn increasing attention in cell therapy and regenerative medicine, not to mention the ease to isolate them from donors. Culture conditions are critical for expanding hASCs while maintaining optimal therapeutic capabilities. Here, we identified a role for transforming growth factor ß1 (TGFß1) in culture medium in influencing the fate of hASCs during in vitro cell expansion. Human ASCs obtained after expansion in standard culture medium (Standard-hASCs) and in endothelial cell growth medium 2 (EGM2-hASCs) were characterized by high-throughput transcriptional studies, gene set enrichment analysis and functional properties. EGM2-hASCs exhibited enhanced multipotency capabilities and an immature phenotype compared with Standard-hASCs. Moreover, the adipogenic potential of EGM2-hASCs was enhanced, including toward beige adipogenesis, compared with Standard-hASCs. In these conditions, TGFß1 acts as a critical factor affecting the immaturity and multipotency of Standard-hASCs, as suggested by small mother of decapentaplegic homolog 3 (SMAD3) nuclear localization and phosphorylation in Standard-hASCs vs EGM2-hASCs. Finally, the typical priming of Standard-hASCs into osteoblast, chondroblast, and vascular smooth muscle cell (VSMC) lineages was counteracted by pharmacological inhibition of the TGFß1 receptor, which allowed retention of SMAD3 into the cytoplasm and a decrease in expression of osteoblast and VSMC lineage markers. Overall, the TGFß1 pathway appears critical in influencing the commitment of hASCs toward osteoblast, chondroblast, and VSMC lineages, thus reducing their adipogenic potential. These effects can be counteracted by using EGM2 culture medium or chemical inhibition of the TGFß1 pathway.
Assuntos
Adipócitos Bege/metabolismo , Adipócitos Brancos/metabolismo , Tecido Adiposo/metabolismo , Células Estromais/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proliferação de Células , Células Cultivadas , Meios de Cultura , HumanosRESUMO
Agriculture has benefited from various conventional techniques for plant breeding, including chemical- or radiation-induced mutagenesis, and to some extent from transgenesis. Genome editing techniques are likely to allow straightforward, cost-effective and efficient gene-specific modifications for identified genetic traits associated to agronomic interest. As for previous plant breeding techniques, genome editing techniques need an appraisal for unintended effects. Hence, an evaluation of potential specific risks associated with genome editing must be considered. The Scientific Committee of the High Council for biotechnology (HCB), using a broad theoretical and literature-based approach, identified three categories of points to consider in terms of hazards in health and environment, as compared to conventional breeding: (1) technical unintended effects related to effector persistence as well as risks associated with off-target modifications or other unintended genome modifications, (2) risks arising from the desired trait and its novelty in the plant, and (3) risks associated with the potential modification of plant breeding practices, owing to efficacy and technical ease-of-use of genome editing (acceleration), be it for single traits or for combined modifications (multiplex genome editing). Due to novelty, HCB also envisions the need for specific risk assessment and management.
Assuntos
Produtos Agrícolas/genética , Edição de Genes/métodos , Genoma de Planta/genética , Plantas Geneticamente Modificadas/genética , DNA/genética , Engenharia Genética/tendências , Humanos , Fenótipo , Melhoramento Vegetal , Plantas Geneticamente Modificadas/crescimento & desenvolvimentoRESUMO
AIM: Hepatocellular carcinoma (HCC) is a common outcome of chronic hepatitis C virus (HCV) infection and constitutes the main burden of this disease. The molecular mechanisms underlying the development of HCC are multiple and might involve certain microRNA (miR). As discordant results have been reported concerning the detection of expression of miR-152 and miR-122 in HCC, our aim was to measure the levels of both miRs in serum and liver samples. METHODS: We analyzed miR-152 and miR-122 expression by reverse transcription-quantitative polymerase chain reaction in a serum cohort from 14 HCV-infected patients who developed HCC, 20 HCV+ patients without HCC, and 19 control patients. We also studied miR-152 and miR-122 in an independent tissue cohort from 11 normal livers, and from paired HCC and non-tumor adjacent livers of 11 HCV-infected patients and 12 non-infected patients. RESULTS: In serum samples, higher levels of miR-122 were found in non-HCC HCV+ compared to HCC HCV+ and control groups, whereas miR-152 was detectable in a lower range in HCC HCV+ compared to non-HCC HCV+ and control groups. We found higher signals for miR-122 and miR-152 in non-tumor liver and HCC tissues compared to control tissues. Hepatocellular carcinoma etiology had no detectable influence on miR-122 expression, whereas miR-152 was increased in HCV+ tissue samples. CONCLUSIONS: Detection of low values of circulating miR-152 is a potentially interesting marker of hepatocarcinogenesis in HCV+ patients, in contrast to miR-122, which varies according to hepatocyte damage.
RESUMO
All tumors have in common to reactivate a telomere maintenance mechanism to allow for unlimited proliferation. On the other hand, genetic instability found in some tumors can result from the loss of telomeres. Here, we measured telomere length in colorectal cancers (CRCs) using TRF (Telomere Restriction Fragment) analysis. Telomeric DNA content was also quantified as the ratio of total telomeric (TTAGGG) sequences over that of the invariable Alu sequences. In most of the 125 CRCs analyzed, there was a significant diminution in telomere length compared with that in control healthy tissue. Only 34 tumors exhibited no telomere erosion and, in some cases, a slight telomere lengthening. Telomere length did not correlate with age, gender, tumor stage, tumor localization or stage of tumor differentiation. In addition, while telomere length did not correlate with the presence of a mutation in BRAF (V-raf murine sarcoma viral oncogene homolog B), PIK3CA (phosphatidylinositol 3-kinase catalytic subunit), or MSI status, it was significantly associated with the occurrence of a mutation in KRAS. Interestingly, we found that the shorter the telomeres in healthy tissue of a patient, the larger an increase in telomere length in the tumor. Our study points to the existence of two types of CRCs based on telomere length and reveals that telomere length in healthy tissue might influence telomere maintenance mechanisms in the tumor.
Assuntos
Classe I de Fosfatidilinositol 3-Quinases/genética , Neoplasias Colorretais/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Telômero/genética , Biomarcadores Tumorais/genética , Neoplasias Colorretais/patologia , Feminino , Humanos , Masculino , Instabilidade de Microssatélites , Mutação , Patologia Molecular , Homeostase do Telômero/genéticaRESUMO
To evaluate the diagnostic value of MDM2 status in craniofacial fibro-osseous lesions, we investigated MDM2 expression by immunohistochemistry and analyzed MDM2 amplification by qPCR in 30 cases of ossifying fibroma (including 13 cases of the juvenile variant) and 17 cases of fibrous dysplasia. Two cases of uncommon extragnathic psammomatoid fibrous dysplasia and a mixed control group of 15 cases of low-grade osteosarcoma and 15 cases of well-differentiated/dedifferentiated liposarcoma were included. MDM2 amplification was found in 33% of ossifying fibromas (peak of 69% for the juvenile variant) and in 12% of fibrous dysplasia, in none of which was MDM2 overexpressed. All control cases exhibited MDM2 amplification and overexpression. To investigate possible polysomy of chromosome 12, we studied RASAL1 amplification, a gene telomeric to MDM2 on the long arm of chromosome 12. RASAL1 amplification was reported in all benign fibro-osseous lesions exhibiting MDM2 amplification but not in controls. Simultaneous amplification of these two genes was significantly higher in juvenile ossifying fibromas compared with fibrous dysplasia (P=0.004), non-juvenile ossifying fibromas (P=0.001), and all other benign craniofacial fibro-osseous lesions combined (P=0.0001). Of the nine cases of juvenile ossifying fibroma exhibiting amplification, three were locally invasive and four were recurrent, suggesting aggressive disease. The two cases of extragnathic psammomatoid fibrous dysplasia also showed MDM2 and RASAL1 amplification with no MDM2 overexpression. This large chromosome 12 rearrangement, spanning MDM2 and RASAL1, is the first recurrent molecular abnormality to be reported in juvenile ossifying fibroma. It may represent both a molecular diagnostic marker and a characteristic of more aggressive forms with a higher risk of recurrence. Finally, the presence of this rearrangement in extragnathic psammomatoid fibro-osseous lesions mimicking ossifying fibromas might reflect a common molecular pathway in their pathogenesis and calls into question the classification of such lesions within fibrous dysplasia.
Assuntos
Neoplasias Ósseas/genética , Cromossomos Humanos Par 12/genética , Fibroma Ossificante/genética , Displasia Fibrosa Óssea/genética , Proteínas Ativadoras de GTPase/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Adolescente , Adulto , Idoso , Neoplasias Ósseas/diagnóstico , Criança , Pré-Escolar , Ossos Faciais , Feminino , Fibroma Ossificante/diagnóstico , Displasia Fibrosa Óssea/diagnóstico , Rearranjo Gênico , Humanos , Imuno-Histoquímica , Lactente , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Estudos Retrospectivos , Crânio , Neoplasias Cranianas/diagnóstico , Neoplasias Cranianas/genética , Adulto JovemRESUMO
BACKGROUND: Na(V)1.5 voltage-gated sodium channels are abnormally expressed in breast tumours and their expression level is associated with metastatic occurrence and patients' death. In breast cancer cells, Na(V)1.5 activity promotes the proteolytic degradation of the extracellular matrix and enhances cell invasiveness. FINDINGS: In this study, we showed that the extinction of Na(V)1.5 expression in human breast cancer cells almost completely abrogated lung colonisation in immunodepressed mice (NMRI nude). Furthermore, we demonstrated that ranolazine (50 µM) inhibited Na(V)1.5 currents in breast cancer cells and reduced Na(V)1.5-related cancer cell invasiveness in vitro. In vivo, the injection of ranolazine (50 mg/kg/day) significantly reduced lung colonisation by Na(V)1.5-expressing human breast cancer cells. CONCLUSIONS: Taken together, our results demonstrate the importance of Na(V)1.5 in the metastatic colonisation of organs by breast cancer cells and indicate that small molecules interfering with Na(V) activity, such as ranolazine, may represent powerful pharmacological tools to inhibit metastatic development and improve cancer treatments.
Assuntos
Acetanilidas/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Pulmão/patologia , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Invasividade Neoplásica/patologia , Piperazinas/farmacologia , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Feminino , Humanos , Camundongos , Camundongos Nus , Metástase Neoplásica/tratamento farmacológico , Metástase Neoplásica/patologia , RanolazinaRESUMO
BACKGROUND: Restoration of the mechanical and endocrine functions of the left atrium remains controversial after electrical cardioversion treatment for persistent atrial fibrillation. The objective of the prospective study was to describe the recovery of the endocrine and mechanical functions of the left atrium. METHODS: Evaluation of left atrium recovery after electrical cardioversion by the new speckle-tracking echocardiography technique and proANP measurement. RESULTS: Twenty patients suffering from persistent atrial fibrillation with no alteration of left ventricular ejection fraction were prospectively evaluated at baseline and then one month later by echocardiography, measuring left atrial volume and left atrial deformation (MPALS), as well as the proANP and BNP concentrations. One month after cardioversion 10 patients remained in sinus rhythm and 10 showed recurrent atrial fibrillation. No significant differences between the two groups in terms of clinical, echocardiographic and endocrine parameters were observed at baseline evaluation. We observed a significant reduction of left atrial volume only in the sinus group, whereas restoration of the left atrial deformation was only partial (18%) in that group. By contrast, we registered no significant changes in ANP concentration at one month in either the sinus or the atrial fibrillation groups. CONCLUSION: These results suggest that restoration of left atrium mechanical function is only partial one month after treatment of persistent atrial fibrillation by electrical cardioversion, whereas a significant reduction of left atrial volume was noted, explaining the remaining high level of ANP in the sinus group.
Assuntos
Fibrilação Atrial/fisiopatologia , Função do Átrio Esquerdo/fisiologia , Cardioversão Elétrica , Sistema Endócrino/fisiopatologia , Recuperação de Função Fisiológica/fisiologia , Idoso , Fibrilação Atrial/diagnóstico por imagem , Fator Natriurético Atrial/metabolismo , Feminino , Átrios do Coração/patologia , Átrios do Coração/fisiopatologia , Humanos , Masculino , Projetos Piloto , UltrassonografiaRESUMO
BACKGROUND: Deliberate cellular reprogramming is becoming a realistic objective in the clinic. While the origin of the target cells is critical, delivery of bioactive molecules to trigger a shift in cell-fate remains the major hurdle. To date, several strategies based either on non-integrative vectors, protein transfer or mRNA delivery have been investigated. In a recent study, a unique modification in the retroviral genome was shown to enable RNA transfer and its expression. RESULTS: Here, we used the retroviral mRNA delivery approach to study the impact of modifying gene-flanking sequences on RNA transfer. We designed modified mRNAs for retroviral packaging and used the quantitative luciferase assay to compare mRNA expression following viral transduction of cells. Cloning the untranslated regions of the vimentin or non-muscular myosin heavy chain within transcripts improved expression and stability of the reporter gene while slightly modifying reporter-RNA retroviral delivery. We also observed that while the modified retroviral platform was the most effective for retroviral mRNA packaging, the highest expression in target cells was achieved by the addition of a non-viral UTR to mRNAs containing the packaging signal. CONCLUSIONS: Through molecular engineering we have assayed a series of constructs to improve retroviral mRNA transfer. We showed that an authentic RNA retroviral genomic platform was most efficiently transferred but that adding UTR sequences from highly expressed genes could improve expression upon transfection while having only a slight effect on expression from transferred RNA. Together, these data should contribute to the optimisation of retroviral mRNA-delivery systems that test combinations of UTRs and packaging platforms.
Assuntos
RNA Mensageiro/metabolismo , Retroviridae/genética , Expressão Gênica , Genes Reporter , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Células HEK293 , Humanos , Luciferases/genética , Luciferases/metabolismo , Cadeias Pesadas de Miosina/genética , Estabilidade de RNA , RNA Mensageiro/genética , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Regiões não Traduzidas , Vimentina/genética , Vírion/genética , Vírion/metabolismoRESUMO
GNAS (guanine nucleotide-binding protein/α-subunit) mutations that induce the activation of G-protein α-subunit participate in the pathogenesis of fibrous dysplasia. The aim of this study was to evaluate the sensitivity and specificity of GNAS mutations in fibrous dysplasia and other fibro-osseous lesions, to assess the value of investigating this mutation in the diagnosis of fibro-osseous lesions. We studied 91 cases of fibrous dysplasia. The quality and/or quantity of genomic DNA were suitable for molecular analysis for 51 cases of fibrous dysplasia. GNAS mutations were investigated by three techniques: high-resolution melting (exon 8), allele-specific PCR (exons 8 and 9) and/or direct DNA sequencing (exons 8 and 9). Fibrous dysplasia samples were classified blind to the GNAS mutation status into six histological subtypes as conventional, fibro-involutive, osteosclerosing, cementifying, osteocartilaginous and with prominent aneurysmal cystic changes. We also studied 14 cases of low-grade osteosarcoma, 21 cases of ossifying fibroma, 3 cases of osteofibrous dysplasia, 1 case of osseous dysplasia of the jawbone and 1 post-traumatic lesion of the ribs. Twenty-three cases of fibrous dysplasia (45%) showed mutations of codon 201 (exon 8, p.R201H or p.R201C). No mutation was found on codon 227 (exon 9). GNAS mutations in conventional fibrous dysplasia were detected in the same proportion (47%) as in the other histological subtypes (47%, P=0.96), regardless of sex (P=0.44), age (P=0.90) and location (P=1). GNAS mutations were not detected in any other fibro-osseous lesions. The GNAS mutation was thus specific to fibrous dysplasia in the context of fibro-osseous lesions. The particular mosaicism of mutant and non-mutant cells within the lesion or the existence of other mutations not already described could explain the lack of GNAS mutation in cases of fibrous dysplasia. Investigating this mutation may constitute a valuable complementary diagnostic tool, despite its low sensitivity, particularly in unconventional morphologically different subtypes of fibrous dysplasia.
Assuntos
Biomarcadores/análise , Doenças do Desenvolvimento Ósseo/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Mutação , Adolescente , Adulto , Neoplasias Ósseas/genética , Criança , Cromograninas , Análise Mutacional de DNA , Feminino , Fibroma Ossificante/genética , Humanos , Masculino , Pessoa de Meia-Idade , Osteossarcoma/genética , Estudos Retrospectivos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sensibilidade e Especificidade , Adulto JovemRESUMO
BACKGROUND: Native bone marrow (BM) mesenchymal stem/stromal cells (BM-MSCs) participate in generating and shaping the skeleton and BM throughout the lifespan. Moreover, BM-MSCs regulate hematopoiesis by contributing to the hematopoietic stem cell niche in providing critical cytokines, chemokines and extracellular matrix components. However, BM-MSCs contain a heterogeneous cell population that remains ill-defined. Although studies on the taxonomy of native BM-MSCs in mice have just started to emerge, the taxonomy of native human BM-MSCs remains unelucidated. METHODS: By using single-cell RNA sequencing (scRNA-seq), we aimed to define a proper taxonomy for native human BM non-hematopoietic subsets including endothelial cells (ECs) and mural cells (MCs) but with a focal point on MSCs. To this end, transcriptomic scRNA-seq data were generated from 5 distinct BM donors and were analyzed together with other transcriptomic data and with computational biology analyses at different levels to identify, characterize and classify distinct native cell subsets with relevant biomarkers. RESULTS: We could ascribe novel specific biomarkers to ECs, MCs and MSCs. Unlike ECs and MCs, MSCs exhibited an adipogenic transcriptomic pattern while co-expressing genes related to hematopoiesis support and multilineage commitment potential. Furthermore, by a comparative analysis of scRNA-seq of BM cells from humans and mice, we identified core genes conserved in both species. Notably, we identified MARCKS, CXCL12, PDGFRA, and LEPR together with adipogenic factors as archetypal biomarkers of native MSCs within BM. In addition, our data suggest some complex gene nodes regulating critical biological functions of native BM-MSCs together with a preferential commitment toward an adipocyte lineage. CONCLUSIONS: Overall, our taxonomy for native BM non-hematopoietic compartment provides an explicit depiction of gene expression in human ECs, MCs and MSCs at single-cell resolution. This analysis helps enhance our understanding of the phenotype and the complexity of biological functions of native human BM-MSCs.
Assuntos
Células Endoteliais , Células-Tronco Mesenquimais , Humanos , Animais , Camundongos , Células da Medula Óssea , Biomarcadores , Análise de Sequência de RNARESUMO
Attaining personalized healthy aging requires accurate monitoring of physiological changes and identifying subclinical markers that predict accelerated or delayed aging. Classic biostatistical methods most rely on supervised variables to estimate physiological aging and do not capture the full complexity of inter-parameter interactions. Machine learning (ML) is promising, but its black box nature eludes direct understanding, substantially limiting physician confidence and clinical usage. Using a broad population dataset from the National Health and Nutrition Examination Survey (NHANES) study including routine biological variables and after selection of XGBoost as the most appropriate algorithm, we created an innovative explainable ML framework to determine a Personalized physiological age (PPA). PPA predicted both chronic disease and mortality independently of chronological age. Twenty-six variables were sufficient to predict PPA. Using SHapley Additive exPlanations (SHAP), we implemented a precise quantitative associated metric for each variable explaining physiological (i.e., accelerated or delayed) deviations from age-specific normative data. Among the variables, glycated hemoglobin (HbA1c) displays a major relative weight in the estimation of PPA. Finally, clustering profiles of identical contextualized explanations reveal different aging trajectories opening opportunities to specific clinical follow-up. These data show that PPA is a robust, quantitative and explainable ML-based metric that monitors personalized health status. Our approach also provides a complete framework applicable to different datasets or variables, allowing precision physiological age estimation.
Assuntos
Algoritmos , Nível de Saúde , Inquéritos Nutricionais , Aprendizado de MáquinaRESUMO
Adult human mesenchymal stromal cells (hMSCs) have the potential to differentiate into chondrogenic, adipogenic, or osteogenic lineages, providing a potential source for tissue regeneration. An important issue for efficient bone regeneration is to identify factors that can be targeted to promote the osteogenic potential of hMSCs. Using transcriptome analysis, we found that integrin alpha5 (ITGA5) expression is up-regulated during dexamethasone-induced osteoblast differentiation of hMSCs. Gain-of-function studies showed that ITGA5 promotes the expression of osteoblast phenotypic markers and in vitro osteogenesis of hMSCs. Down-regulation of endogenous ITGA5 using specific shRNAs blunted osteoblast marker gene expression and osteogenic differentiation. Molecular analyses showed that the enhanced osteoblast differentiation induced by ITGA5 was mediated by activation of focal adhesion kinase/ERK1/2-MAPKs and PI3K signaling pathways. Remarkably, activation of endogenous ITGA5 using agonists such as a specific antibody that primes the integrin or a peptide that specifically activates ITGA5 was sufficient to enhance ERK1/2-MAPKs and PI3K signaling and to promote osteoblast differentiation and osteogenic capacity of hMSCs. Importantly, we demonstrated that hMSCs engineered to overexpress ITGA5 exhibited a marked increase in their osteogenic potential in vivo. Taken together, these findings not only reveal that ITGA5 is required for osteoblast differentiation of adult hMSCs but also provide a targeted strategy using ITGA5 agonists to promote the osteogenic capacity of hMSCs. This may be used for tissue regeneration in bone disorders where the recruitment or capacity of hMSCs is compromised.
Assuntos
Diferenciação Celular , Integrina alfa5/metabolismo , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese , Células Estromais/citologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Inativação Gênica , Humanos , Osteoblastos/enzimologia , Fosfatidilinositol 3-Quinases/metabolismo , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Regulação para CimaRESUMO
The advent of infectious molecular clones of Hepatitis C virus (HCV) has unlocked the understanding of HCV life cycle. However, packaging of the genomic RNA, which is crucial to generate infectious viral particles, remains poorly understood. Molecular interactions of the domain 1 (D1) of HCV Core protein and HCV RNA have been described in vitro. Since compaction of genetic information within HCV genome has hampered conventional mutational approach to study packaging in vivo, we developed a novel heterologous system to evaluate the interactions between HCV RNA and CoreD1. For this, we took advantage of the recruitment of Vpr fusion-proteins into HIV-1 particles. By fusing HCV Core D1 to Vpr we were able to package and transfer a HCV subgenomic replicon into a HIV-1 based lentiviral vector. We next examined how deletion mutants of basic sub-domains of Core D1 influenced HCV RNA recruitment. The results emphasized the crucial role of the first and third basic regions of D1 in packaging. Interestingly, the system described here allowed us to mobilise full-length JFH1 genome in CD81 defective cells, which are normally refractory to HCV infection. This finding paves the way to an evaluation of the replication capability of HCV in various cell types.
Assuntos
Hepacivirus/fisiologia , RNA Viral/fisiologia , Vírion/fisiologia , Montagem de Vírus , Replicação Viral , Linhagem Celular , Vetores Genéticos/genética , Vetores Genéticos/fisiologia , Hepacivirus/genética , Humanos , Lentivirus/genética , Lentivirus/fisiologia , RNA Viral/genética , Replicon/genética , Replicon/fisiologiaRESUMO
The consistency of cerebrospinal fluid amyloid-ß (Aß)42/40 ratio and Aß42 has not been assessed in the AT(N) classification system. We analyzed the classification changes of the dichotomized amyloid status (A+/A-) in 363 patients tested for Alzheimer's disease biomarkers after Aß42 was superseded by the Aß42/40 ratio. The consistency of Aß42 and the Aß42/40 ratio was very low. Notably, the proportions of "false" A+T-patients were considerable (74-91%) and corresponded mostly to patients not clinically diagnosed with Alzheimer's disease. Our results suggest that the interchangeability of Aß42/40 ratio and Aß42 is limited for classifying patients in clinical setting using the AT(N) scheme.
Assuntos
Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano , Terminologia como Assunto , Idoso , Doença de Alzheimer/classificação , Humanos , Proteínas tau/líquido cefalorraquidianoRESUMO
The potential of mesenchymal stem cells (MSC) to differentiate into functional bone forming cells provides an important tool for bone regeneration. The identification of factors capable of promoting osteoblast differentiation in MSCs is therefore critical to enhance the osteogenic potential of MSCs. Using microarray analysis combined with biochemical and molecular approach, we found that FGF18, a member of the FGF family, is upregulated during osteoblast differentiation induced by dexamethasone in murine MSCs. We showed that overexpression of FGF18 by lentiviral (LV) infection, or treatment of MSCs with recombinant human (rh)FGF18 increased the expression of the osteoblast specific transcription factor Runx2, and enhanced osteoblast phenotypic marker gene expression and in vitro osteogenesis. Molecular silencing using lentiviral shRNA demonstrated that downregulation of FGFR1 or FGFR2 abrogated osteoblast gene expression induced by either LV-FGF18 or rhFGF18, indicating that FGF18 enhances osteoblast differentiation in MSCs via activation of FGFR1 or FGFR2 signaling. Biochemical and pharmacological analyses showed that the induction of phenotypic osteoblast markers by LV-FGF18 is mediated by activation of ERK1/2-MAPKs and PI3K signaling in MSCs. These results reveal that FGF18 is an essential autocrine positive regulator of the osteogenic differentiation program in murine MSCs and indicate that osteogenic differentiation induced by FGF18 in MSCs is triggered by FGFR1/FGFR2-mediated ERK1/2-MAPKs and PI3K signaling.
Assuntos
Comunicação Autócrina/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Dexametasona/farmacologia , Fatores de Crescimento de Fibroblastos/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos dos fármacos , Animais , Diferenciação Celular/genética , Linhagem Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/enzimologia , Camundongos , Modelos Biológicos , Fosfatidilinositol 3-Quinases/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacosRESUMO
The capacity of mesenchymal stem cells (MSCs) to differentiate into functional osteoblasts is tightly controlled by transcription factors that trigger osteoblast commitment and differentiation. The role of Twist1, a basic helix-loop-helix (bHLH) transcription factor, in osteogenic differentiation of MSCs remains unclear. Here we investigated the role of Twist1 in the osteogenic differentiation program of murine C3H10T1/2 mesenchymal cells. We showed that molecular silencing of Twist1 using short hairpin RNA (shRNA) expression moderately increased C3H10T1/2 cell proliferation and had no effect on cell survival. In contrast, Twist1 silencing enhanced osteoblast gene expression and matrix mineralization in vitro. Biochemical analyses revealed that Twist1 silencing increased the expression of FGFR2 protein level, which was reduced by a mutant Runx2. Consistent with this finding, Twist1 silencing increased ERK1/2 and PI3K signaling. Moreover, molecular or pharmacological inhibition of FGFR2 or of ERK1/2 and PI3K signaling partly abolished the increased osteoblast gene expression induced by Twist1 silencing in C3H10T1/2 cells. These results reveal that Twist1 silencing upregulates osteoblast differentiation of murine mesenchymal cells in part via activation of FGFR2 expression and downstream signaling pathways, which provides novel insights into the molecular signals by which this transcription factor regulates the osteogenic differentiation program in MSCs.
Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Proteínas Nucleares/metabolismo , Osteoblastos/metabolismo , Interferência de RNA , Proteína 1 Relacionada a Twist/metabolismo , Animais , Western Blotting , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C3H , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Nucleares/genética , Osteoblastos/citologia , Fosfatidilinositol 3-Quinases/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Proteína 1 Relacionada a Twist/genéticaRESUMO
Cell migration and invasion are required for tumour cells to spread from the primary tumour bed so as to form secondary tumours at distant sites. We report evidence of an unusual expression of KCa2.3 (SK3) protein in melanoma cell lines but not in normal melanocytes. Knockdown of the KCa2.3 channel led to plasma membrane depolarization, decreased 2D and 3D cell motility. Conversely, enforced production of KCa2.3 protein in KCa2.3 non-expressing cells led to the plasma membrane becoming hyperpolarized, and enhanced cell motility. In contrast, KCa3.1 channels had no effect on cell motility despite an active role in regulating membrane potential. Our data also suggest that membrane hyperpolarization increases melanoma cell motility and that this occurs through the KCa2.3 channel. Our findings reveal a previously unknown function of the KCa2.3 channel, and suggest that the KCa2.3 channel might be the only member of the Ca(2+)-activated K(+) channel family involved in melanoma cell motility pathways.
Assuntos
Movimento Celular/fisiologia , Melanoma/metabolismo , Melanoma/patologia , Potenciais da Membrana/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/fisiologia , Apamina/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Clotrimazol/farmacologia , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Fenômenos Eletrofisiológicos/fisiologia , Expressão Gênica/genética , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/antagonistas & inibidores , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/fisiologia , Melanócitos/citologia , Melanócitos/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/farmacologia , Pirazóis/farmacologia , RNA Antissenso/genética , Canais de Potássio Ativados por Cálcio de Condutância Baixa/antagonistas & inibidores , TransfecçãoRESUMO
UNLABELLED: BRAF V600E mutation in papillary thyroid carcinoma (PTC): prevalence and detection in fine needle aspiration (FNA) specimens. BACKGROUND AND OBJECTIVE: The activating mutation of the BRAF gene, T1799A, is the most common and specific genetic alteration in PTC. In the present study, our aims were to confirm these data and investigate the feasibility of BRAF mutation detection in FNA specimens. METHODS: In a retrospective study, we examined paraffin-embedded surgical samples of 57 PTC and 51 non-PTC thyroid tumors for the presence of BRAF mutation by dideoxy sequencing. We analyzed thyroid aspirates (drop and washed-out solution) and smears from 31 patients who underwent thyroidectomy, before intraoperative frozen sections, and 25 archival thyroid FNA smears. RESULTS: The BRAF mutation was present in 58 % of PTC. Among non-PTC thyroid tumors, only one medullary thyroid carcinoma contained the BRAF mutation. BRAF mutation was correctly detected from the FNA-derived materials. Considering the search of BRAF mutation in preoperative FNA smears, the diagnosis of PTC would have been affirmed in 31 % (4/13) of indeterminate and suspicious FNA. CONCLUSION: BRAF mutation detection in FNA specimens is feasible and could be used as an adjunct tool for preoperative diagnosis of PTC classified as indeterminate and suspicious with conventional cytology (categories 3, 4 and 5 according to NCI/Bethesda 2008 terminology).
Assuntos
Carcinoma Papilar/genética , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias da Glândula Tireoide/genética , Biópsia , Biópsia por Agulha Fina/métodos , Carcinoma Papilar/epidemiologia , Carcinoma Papilar/patologia , Carcinoma Papilar/cirurgia , França/epidemiologia , Humanos , Mutação , Prevalência , Neoplasias da Glândula Tireoide/epidemiologia , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/cirurgia , TireoidectomiaRESUMO
Autophagy has been associated with oncogenesis with one of its emerging key functions being its contribution to the metabolism of tumors. Therefore, deciphering the mechanisms of how autophagy supports tumor cell metabolism is essential. Here, we demonstrate that the inhibition of autophagy induces an accumulation of lipid droplets (LD) due to a decrease in fatty acid ß-oxidation, that leads to a reduction of oxidative phosphorylation (OxPHOS) in acute myeloid leukemia (AML), but not in normal cells. Thus, the autophagic process participates in lipid catabolism that supports OxPHOS in AML cells. Interestingly, the inhibition of OxPHOS leads to LD accumulation with the concomitant inhibition of autophagy. Mechanistically, we show that the disruption of mitochondria-endoplasmic reticulum (ER) contact sites (MERCs) phenocopies OxPHOS inhibition. Altogether, our data establish that mitochondria, through the regulation of MERCs, controls autophagy that, in turn finely tunes lipid degradation to fuel OxPHOS supporting proliferation and growth in leukemia.