Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Stem Cells ; 39(8): 1107-1119, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33739574

RESUMO

The Sox2 transcription factor is necessary for the long-term self-renewal of neural stem cells (NSCs). Its mechanism of action is still poorly defined. To identify molecules regulated by Sox2, and acting in mouse NSC maintenance, we transduced, into Sox2-deleted NSC, genes whose expression is strongly downregulated following Sox2 loss (Fos, Jun, Egr2), individually or in combination. Fos alone rescued long-term proliferation, as shown by in vitro cell growth and clonal analysis. Furthermore, pharmacological inhibition by T-5224 of FOS/JUN AP1 complex binding to its targets decreased cell proliferation and expression of the putative target Suppressor of cytokine signaling 3 (Socs3). Additionally, Fos requirement for efficient long-term proliferation was demonstrated by the reduction of NSC clones capable of long-term expansion following CRISPR/Cas9-mediated Fos inactivation. Previous work showed that the Socs3 gene is strongly downregulated following Sox2 deletion, and its re-expression by lentiviral transduction rescues long-term NSC proliferation. Fos appears to be an upstream regulator of Socs3, possibly together with Jun and Egr2; indeed, Sox2 re-expression in Sox2-deleted NSC progressively activates both Fos and Socs3 expression; in turn, Fos transduction activates Socs3 expression. Based on available SOX2 ChIPseq and ChIA-PET data, we propose a model whereby Sox2 is a direct activator of both Socs3 and Fos, as well as possibly Jun and Egr2; furthermore, we provide direct evidence for FOS and JUN binding on Socs3 promoter, suggesting direct transcriptional regulation. These results provide the basis for developing a model of a network of interactions, regulating critical effectors of NSC proliferation and long-term maintenance.


Assuntos
Células-Tronco Neurais , Proteínas Proto-Oncogênicas c-fos , Fatores de Transcrição SOXB1 , Animais , Proliferação de Células/genética , Autorrenovação Celular/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Camundongos , Células-Tronco Neurais/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo
2.
Glia ; 69(3): 579-593, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32975900

RESUMO

Cancer stem cells (CSC) are essential for tumorigenesis. The transcription factor Sox2 is overexpressed in brain gliomas, and is essential to maintain CSC. In mouse high-grade glioma pHGG cells in culture, Sox2 deletion causes cell proliferation arrest and inability to reform tumors after transplantation in vivo; in Sox2-deleted cells, 134 genes are derepressed. To identify genes mediating Sox2 deletion effects, we overexpressed into pHGG cells nine among the most derepressed genes, and identified four genes, Ebf1, Hey2, Zfp423, and Cdkn2b, that strongly reduced cell proliferation in vitro and brain tumorigenesis in vivo. CRISPR/Cas9 mutagenesis of each gene, individually or in combination (Ebf1 + Cdkn2b), significantly antagonized the proliferation arrest caused by Sox2 deletion. The same genes also repressed clonogenicity in primary human glioblastoma-derived CSC-like lines. These experiments identify a network of critical tumor suppressive Sox2-targets whose inhibition by Sox2 is involved in glioma CSC maintenance, defining new potential therapeutic targets.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Oligodendroglioma , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Neoplasias Encefálicas/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Regulação para Baixo , Glioma/genética , Camundongos , Células-Tronco Neoplásicas/metabolismo , Proteínas Repressoras , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Transativadores
3.
Glia ; 66(9): 1929-1946, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29732603

RESUMO

Sox2 is a transcription factor active in the nervous system, within different cell types, ranging from radial glia neural stem cells to a few specific types of differentiated glia and neurons. Mutations in the human SOX2 transcription factor gene cause various central nervous system (CNS) abnormalities, involving hippocampus and eye defects, as well as ataxia. Conditional Sox2 mutation in mouse, with different Cre transgenes, previously recapitulated different essential features of the disease, such as hippocampus and eye defects. In the cerebellum, Sox2 is active from early embryogenesis in the neural progenitors of the cerebellar primordium; Sox2 expression is maintained, postnatally, within Bergmann glia (BG), a differentiated cell type essential for Purkinje neurons functionality and correct motor control. By performing Sox2 Cre-mediated ablation in the developing and postnatal mouse cerebellum, we reproduced ataxia features. Embryonic Sox2 deletion (with Wnt1Cre) leads to reduction of the cerebellar vermis, known to be commonly related to ataxia, preceded by deregulation of Otx2 and Gbx2, critical regulators of vermis development. Postnatally, BG is progressively disorganized, mislocalized, and reduced in mutants. Sox2 postnatal deletion, specifically induced in glia (with GLAST-CreERT2), reproduces the BG defect, and causes (milder) ataxic features. Our results define a role for Sox2 in cerebellar function and development, and identify a functional requirement for Sox2 within postnatal BG, of potential relevance for ataxia in mouse mutants, and in human patients.


Assuntos
Ataxia/metabolismo , Vermis Cerebelar/crescimento & desenvolvimento , Vermis Cerebelar/metabolismo , Neuroglia/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Animais , Animais Recém-Nascidos , Ataxia/patologia , Células Cultivadas , Vermis Cerebelar/patologia , Regulação da Expressão Gênica/fisiologia , Ácido Glutâmico/metabolismo , Proteínas de Homeodomínio/metabolismo , Camundongos Transgênicos , Mutação , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Neuroglia/patologia , Fatores de Transcrição Otx/metabolismo , Fatores de Transcrição SOXB1/genética , Transmissão Sináptica/fisiologia
4.
Mol Cell Endocrinol ; 563: 111864, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36690169

RESUMO

Prenatal exposure to synthetic glucocorticoids (sGCs) reprograms brain development and predisposes the developing fetus towards potential adverse neurodevelopmental outcomes. Using a mouse model of sGC administration, previous studies show that these changes are accompanied by sexually dimorphic alterations in the transcriptome of neural stem and progenitor cells (NSPCs) derived from the embryonic telencephalon. Because cell type-specific gene expression profiles tightly regulate cell fate decisions and are controlled by a flexible landscape of chromatin domains upon which transcription factors and enhancer elements act, we multiplexed data from four genome-wide assays: RNA-seq, ATAC-seq (assay for transposase accessible chromatin followed by genome wide sequencing), dual cross-linking ChIP-seq (chromatin immunoprecipitation followed by genome wide sequencing), and microarray gene expression to identify novel relationships between gene regulation, chromatin structure, and genomic glucocorticoid receptor (GR) action in NSPCs. These data reveal that GR binds preferentially to predetermined regions of accessible chromatin to influence gene programming and cell fate decisions. In addition, we identify SOX2 as a transcription factor that impacts the genomic response of select GR target genes to sGCs (i.e., dexamethasone) in NSPCs.


Assuntos
Glucocorticoides , Células-Tronco Neurais , Feminino , Gravidez , Cromatina/metabolismo , Regulação da Expressão Gênica , Genômica , Glucocorticoides/farmacologia , Glucocorticoides/metabolismo , Células-Tronco Neurais/metabolismo , Receptores de Glucocorticoides/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Camundongos , Células-Tronco Embrionárias Murinas
5.
Cells ; 11(10)2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35626641

RESUMO

SOX2 is a transcription factor conserved throughout vertebrate evolution, whose expression marks the central nervous system from the earliest developmental stages. In humans, SOX2 mutation leads to a spectrum of CNS defects, including vision and hippocampus impairments, intellectual disability, and motor control problems. Here, we review how conditional Sox2 knockout (cKO) in mouse with different Cre recombinases leads to very diverse phenotypes in different regions of the developing and postnatal brain. Surprisingly, despite the widespread expression of Sox2 in neural stem/progenitor cells of the developing neural tube, some regions (hippocampus, ventral forebrain) appear much more vulnerable than others to Sox2 deletion. Furthermore, the stage of Sox2 deletion is also a critical determinant of the resulting defects, pointing to a stage-specificity of SOX2 function. Finally, cKOs illuminate the importance of SOX2 function in different cell types according to the different affected brain regions (neural precursors, GABAergic interneurons, glutamatergic projection neurons, Bergmann glia). We also review human genetics data regarding the brain defects identified in patients carrying mutations within human SOX2 and examine the parallels with mouse mutants. Functional genomics approaches have started to identify SOX2 molecular targets, and their relevance for SOX2 function in brain development and disease will be discussed.


Assuntos
Células-Tronco Neurais , Neuroglia , Fatores de Transcrição SOXB1/metabolismo , Animais , Encéfalo/metabolismo , Sistema Nervoso Central/metabolismo , Humanos , Camundongos , Células-Tronco Neurais/metabolismo , Neuroglia/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição/metabolismo
6.
Cells ; 10(7)2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34359927

RESUMO

The transcription factor SOX2 is important for brain development and for neural stem cells (NSC) maintenance. Sox2-deleted (Sox2-del) NSC from neonatal mouse brain are lost after few passages in culture. Two highly expressed genes, Fos and Socs3, are strongly downregulated in Sox2-del NSC; we previously showed that Fos or Socs3 overexpression by lentiviral transduction fully rescues NSC's long-term maintenance in culture. Sox2-del NSC are severely defective in neuronal production when induced to differentiate. NSC rescued by Sox2 reintroduction correctly differentiate into neurons. Similarly, Fos transduction rescues normal or even increased numbers of immature neurons expressing beta-tubulinIII, but not more differentiated markers (MAP2). Additionally, many cells with both beta-tubulinIII and GFAP expression appear, indicating that FOS stimulates the initial differentiation of a "mixed" neuronal/glial progenitor. The unexpected rescue by FOS suggested that FOS, a SOX2 transcriptional target, might act on neuronal genes, together with SOX2. CUT&RUN analysis to detect genome-wide binding of SOX2, FOS, and JUN (the AP1 complex) revealed that a high proportion of genes expressed in NSC are bound by both SOX2 and AP1. Downregulated genes in Sox2-del NSC are highly enriched in genes that are also expressed in neurons, and a high proportion of the "neuronal" genes are bound by both SOX2 and AP1.


Assuntos
Diferenciação Celular , Regulação da Expressão Gênica , Genoma , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Fator de Transcrição AP-1/genética , Animais , Sequência de Bases , Diferenciação Celular/genética , Regulação para Baixo/genética , Deleção de Genes , Lentivirus/metabolismo , Camundongos , Modelos Biológicos , Neuroglia/metabolismo , Neurônios/metabolismo , RNA-Seq , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Fator de Transcrição AP-1/metabolismo
7.
Nat Commun ; 12(1): 28, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397924

RESUMO

SOX (SRY-related HMG-box) transcription factors perform critical functions in development and cell differentiation. These roles depend on precise nuclear trafficking, with mutations in the nuclear targeting regions causing developmental diseases and a range of cancers. SOX protein nuclear localization is proposed to be mediated by two nuclear localization signals (NLSs) positioned within the extremities of the DNA-binding HMG-box domain and, although mutations within either cause disease, the mechanistic basis has remained unclear. Unexpectedly, we find here that these two distantly positioned NLSs of SOX2 contribute to a contiguous interface spanning 9 of the 10 ARM domains on the nuclear import adapter IMPα3. We identify key binding determinants and show this interface is critical for neural stem cell maintenance and for Drosophila development. Moreover, we identify a structural basis for the preference of SOX2 binding to IMPα3. In addition to defining the structural basis for SOX protein localization, these results provide a platform for understanding how mutations and post-translational modifications within these regions may modulate nuclear localization and result in clinical disease, and also how other proteins containing multiple NLSs may bind IMPα through an extended recognition interface.


Assuntos
Núcleo Celular/metabolismo , Fatores de Transcrição SOXB1/química , Fatores de Transcrição SOXB1/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Animais , Drosophila/metabolismo , Células HEK293 , Humanos , Camundongos , Modelos Moleculares , Proteínas Mutantes/metabolismo , Células-Tronco Neurais/metabolismo , Sinais de Localização Nuclear/metabolismo , Mutação Puntual/genética , Ligação Proteica , Domínios Proteicos , Isoformas de Proteínas/metabolismo , Fatores de Transcrição SOXB1/genética , Relação Estrutura-Atividade
8.
J Exp Neurosci ; 13: 1179069519868224, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31431802

RESUMO

In our article, we asked whether Sox2, a transcription factor important in brain development and disease, is involved in gene regulation through its action on long-range interactions between promoters and distant enhancers. Our findings highlight that Sox2 shapes a genome-wide network of promoter-enhancer interactions, acting by direct binding to these elements. Sox2 loss affects the three-dimensional (3D) genome and decreases the activity of a subset of genes involved in Sox2-bound interactions. At least one of such downregulated genes, Socs3, is critical for long-term neural stem cell maintenance. These results point to the possibility of identifying a transcriptional network downstream to Sox2, and involved in neural stem cell maintenance. In addition, interacting Sox2-bound enhancers are often connected to genes which are relevant, in man, to neurodevelopmental disease; this may facilitate the detection of functionally relevant mutations in regulatory elements in man, contributing to neural disease.

9.
Cell Stem Cell ; 24(3): 462-476.e6, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30849367

RESUMO

The SOX2 transcription factor is critical for neural stem cell (NSC) maintenance and brain development. Through chromatin immunoprecipitation (ChIP) and chromatin interaction analysis (ChIA-PET), we determined genome-wide SOX2-bound regions and Pol II-mediated long-range chromatin interactions in brain-derived NSCs. SOX2-bound DNA was highly enriched in distal chromatin regions interacting with promoters and carrying epigenetic enhancer marks. Sox2 deletion caused widespread reduction of Pol II-mediated long-range interactions and decreased gene expression. Genes showing reduced expression in Sox2-deleted cells were significantly enriched in interactions between promoters and SOX2-bound distal enhancers. Expression of one such gene, Suppressor of Cytokine Signaling 3 (Socs3), rescued the self-renewal defect of Sox2-ablated NSCs. Our work identifies SOX2 as a major regulator of gene expression through connections to the enhancer network in NSCs. Through the definition of such a connectivity network, our study shows the way to the identification of genes and enhancers involved in NSC maintenance and neurodevelopmental disorders.


Assuntos
Cromatina/metabolismo , Células-Tronco Neurais/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Animais , Células Cultivadas , Redes Reguladoras de Genes/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mutação , Fatores de Transcrição SOXB1/deficiência , Fatores de Transcrição SOXB1/genética , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA