Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 19(12): 2231-2240, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36912013

RESUMO

Cyclodextrins are highly functional compounds with a hydrophobic cavity capable of forming supramolecular inclusion complexes with various classes of molecules including surfactants. The resultant rich nanostructures and their dynamics are an interesting research problem in the area of soft condensed matter and related applications. Herein, we report novel dynamical supramolecular assemblies based on the complexation of ß-cyclodextrin with 3 different sulfonic surfactants, which are sodium hexadecylsulfate, sodium dodecylbenzenesulfonate, and myristyl sulfobetaine. It was observed that a ß-cyclodextrin : surfactant/2 : 1 molar ratio was ideal for inducing axial growth and imparting large viscosities in the suspensions. Such complexation processes were accompanied by intriguing nanostructural phase behaviors and rheological properties that were very sensitive to the molecular architecture of sulfonic surfactants. The presence of an amino group in the head group of the surfactant allowed for large viscosities that reached 2.4 × 104 Pa s which exhibited gel-like behavior. In contrast, smaller viscosity values with a lower consistency index were observed when a bulky aromatic ring was present instead. DIC microscopy was used to visually probe the microstructure of the systems with respect to sulfonate molecular architecture. Additionally, surface tension measurements, and FTIR and NMR spectroscopies were used to gain insights into the nature of interactions that lead to the complexation and nanostructural characteristics. Finally, mechanics correlating the supramolecular morphologies to the rheological properties were proposed.

2.
Soft Matter ; 18(28): 5282-5292, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35789362

RESUMO

Recent studies have shown that solvated amphiphiles can form nanostructured self-assemblies called dynamic binary complexes (DBCs) in the presence of ions. Since the nanostructures of DBCs are directly related to their viscoelastic properties, it is important to understand how the nanostructures change under different solution conditions. However, it is challenging to obtain a three-dimensional molecular description of these nanostructures by utilizing conventional experimental characterization techniques or thermodynamic models. To this end, we combined the structural data from small angle X-ray scattering (SAXS) experiments and thermodynamic knowledge from coarse-grained Monte Carlo (CGMC) simulations to identify the detailed three-dimensional nanostructure of DBCs. Specifically, unbiased CGMC simulations are performed with SAXS-guided initial conditions, which aids us to sample accurate nanostructures in a computationally efficient fashion. As a result, an elliptical bilayer nanostructure is obtained as the most probable nanostructure of DBCs whose dimensions are validated by scanning electron microscope (SEM) images. Then, utilizing the obtained molecular model of DBCs, we could also explain the pH tunability of the system. Overall, our results from SAXS-guided unbiased CGMC simulations highlight that using potential energy combined with SAXS data, we can distinguish otherwise degenerate nanostructures resulting from the inherent ambiguity of SAXS patterns.

3.
Adv Colloid Interface Sci ; 321: 103025, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37871381

RESUMO

Stimuli responsive viscosity modifiers entail an important class of materials which allow for smart material formation utilizing various stimuli for switching such as pH, temperature, light and salinity. They have seen applications in the biomedical space including tissue engineering and drug delivery, wherein stimuli responsive hydrogels and polymeric vessels have been extensively applied. Applications have also been seen in other domains like the energy sector and automobile industry, in technologies such as enhanced oil recovery. The chemistry and microstructural arrangements of the aqueous morphologies of dissolved materials are usually sensitive to the aforementioned stimuli which subsequently results in rheological sensitivity as well. Herein, we overview different structures capable of viscosity modification as well as go over the rheological theory associated with classical systems studied in literature. A detailed analysis allows us to explore correlations between commonly discussed models such as molecular packing parameter, tube reptation and stress relaxation with structural and rheological changes. We then present five primary mechanisms corresponding to stimuli responsive viscosity modification: (i) packing parameter modification via functional group conditioning and (ii) via dynamic bond formation, (iii) mesh formation by interlinking of network nodes, (iv) viscosity modification by chain conformation changes and (v) viscosity modification by particle jamming. We also overview several recent examples from literature that employ the concepts discussed to create novel classes of intriguing stimuli responsive structures and their corresponding rheological properties. Furthermore, we also explore systems that are responsive to multiple stimuli which can provide enhanced functionality and versatility by providing multi-level and precise actuation. Such systems have been used for programmed site-specific drug delivery.

4.
J Colloid Interface Sci ; 600: 550-560, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34062344

RESUMO

HYPOTHESIS: Wormlike micelles (WLMs) formed due to the self-assembly of amphiphiles in aqueous solution have similar viscoelastic properties as polymers. Owing to this similarity, in this work, it is postulated that kinetic Monte Carlo (kMC) sampling of slip-springs dynamics, which is able to model the rheology of polymers, can also be extended to capture the relaxation dynamics of WLMs. THEORY: The proposed modeling framework considers the following relaxation mechanisms: reptation, union-scission, and constraint release. Specifically, each of these relaxation mechanisms is simulated as separate kMC events that capture the relaxation dynamics while considering the living nature of WLMs within the slip-spring framework. As a case study, the model is implemented to a system of sodium oleate and sodium chloride to predict the linear rheology and the characteristic relaxation times associated with the individual relaxation mechanisms at different pH and salt concentrations. FINDINGS: Linear rheology predictions were found to be in good agreement with experimental data. Furthermore, the calculated relaxation times highlighted that reptation contributed to a continuous increase in viscosity while union-scission contributed to the decrease in viscosity of WLM solutions at a higher salinity and pH. This manifests the proposed model's capability to provide insights into the key processes governing WLM's rheology.


Assuntos
Micelas , Tensoativos , Algoritmos , Reologia , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA