Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(11): 3470-3475, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38451177

RESUMO

Monolayer transition metal dichalcogenide VTe2 exhibits multiple charge density wave (CDW) phases, mainly (4 × 4) and (4 × 1). Here we report facile dynamic and tens-of-nanometer scale switching between these CDW phases with gentle bias pulses in scanning tunneling microscopy. Bias pulses purposely stimulate a reversible random CDW symmetry change between the isotropic (4 × 4) and anisotropic (4 × 1) CDWs, as well as CDW phase slips and rotation. The switching threshold of ∼1.0 V is independent of bias polarity, and the switching rate varies linearly with the tunneling current. Density functional theory calculations indicate that a coherent CDW phase switching incurs an energy barrier of ∼2.0-3.0 eV per (4 × 4) unit cell. While there is a challenge in understanding the observed large-area CDW random fluttering, we provide some possible explanations. The ability to manipulate electronic CDW phases sheds new light on tailoring CDW properties on demand.

2.
Phys Rev Lett ; 121(19): 196402, 2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30468619

RESUMO

Single layers of transition metal dichalcogenides (TMDCs) are excellent candidates for electronic applications beyond the graphene platform; many of them exhibit novel properties including charge density waves (CDWs) and magnetic ordering. CDWs in these single layers are generally a planar projection of the corresponding bulk CDWs because of the quasi-two-dimensional nature of TMDCs; a different CDW symmetry is unexpected. We report herein the successful creation of pristine single-layer VSe_{2}, which shows a (sqrt[7]×sqrt[3]) CDW in contrast to the (4×4) CDW for the layers in bulk VSe_{2}. Angle-resolved photoemission spectroscopy from the single layer shows a sizable (sqrt[7]×sqrt[3]) CDW gap of ∼100 meV at the zone boundary, a 220 K CDW transition temperature twice the bulk value, and no ferromagnetic exchange splitting as predicted by theory. This robust CDW with an exotic broken symmetry as the ground state is explained via a first-principles analysis. The results illustrate a unique CDW phenomenon in the two-dimensional limit.

3.
Phys Rev Lett ; 114(24): 247203, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-26197003

RESUMO

We demonstrate that a C(60) overlayer enhances the perpendicular magnetic anisotropy of a Co thin film, inducing an inverse spin reorientation transition from in plane to out of plane. The driving force is the (60)/Co interfacial magnetic anisotropy that we have measured quantitatively in situ as a function of the (60) coverage. Comparison with state-of-the-art ab initio calculations show that this interfacial anisotropy mainly arises from the local hybridization between (60) p(z) and Co d(z(2)) orbitals. By generalizing these arguments, we also demonstrate that the hybridization of (60) with a Fe(110) surface decreases the perpendicular magnetic anisotropy. These results open the way to tailor the interfacial magnetic anisotropy in organic-material-ferromagnet systems.

4.
J Phys Chem Lett ; 13(27): 6276-6282, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35775724

RESUMO

We identify and manipulate commonly occurring defects in black phosphorus, combining scanning tunneling microscopy experiments with density functional theory calculations. A ubiquitous defect, imaged at negative bias as a bright dumbbell extending over several nanometers, is shown to arise from a substitutional Sn impurity in the second sublayer. Another frequently observed defect type is identified as arising from an interstitial Sn atom; this defect can be switched to a more stable configuration consisting of a Sn substitutional defect + P adatom, by application of an electrical pulse via the STM tip. DFT calculations show that this pulse-induced structural transition switches the system from a non-magnetic configuration to a magnetic one. We introduce States Projected Onto Individual Layers (SPOIL) quantities which provide information about atom-wise and orbital-wise contributions to bias-dependent features observed in STM images.

5.
Phys Rev Lett ; 104(3): 036103, 2010 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-20366662

RESUMO

We demonstrate the charge state of C60 on a Cu(111) surface can be made optimal, i.e., forming C60(3-) as required for superconductivity in bulk alkali-doped C60, purely through interface reconstruction rather than with foreign dopants. We link the origin of the C60(3-) charge state to a reconstructed interface with ordered (4x4) 7-atom vacancy holes in the surface. In contrast, C60 adsorbed on unreconstructed Cu(111) receives a much smaller amount of electrons. Our results illustrate a definitive interface effect that affects the electronic properties of molecule-electrode contact.

6.
Nanoscale Adv ; 2(12): 5848-5856, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36133857

RESUMO

We demonstrate that the linewidth of the field emission resonance (FER) observed on the surface of MoS2 using scanning tunneling microscopy can vary by up to one order of magnitude with an increasing electric field. This phenomenon originates from quantum trapping, in which the electron relaxed from a resonant electron in the FER is momentarily trapped in a potential well on the MoS2 surface due to its wave nature. Because the relaxed electron and the resonant electron have the same spin, through the action of the Pauli exclusion principle, the lifetimes of the resonant electrons can be substantially prolonged when the relaxed electrons engage in resonance trapping. The linewidth of the FER is thus considerably reduced to as narrow as 12 meV. The coexistence of the resonant electron and the relaxed electron requires the emission of two electrons, which can occur through the exchange interaction.

7.
J Nanosci Nanotechnol ; 8(2): 602-7, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18464377

RESUMO

The migration behavior of C60 on Ni(111) has been inferred from its growth morphology at various substrate temperatures, as observed with scanning tunneling microscopy. The number density of islands increased and their average sizes decreased anomalously in the temperature range of approximately 573 K to approximately 973 K. This trend contradicts the prediction in conventional nucleation theory. At low and high temperatures, C60 commence nucleation on both sides of surface steps in a "bi-directional step flow" mode. However, anisotropy occurs within an intermediate temperature range, in which C60 nucleate predominantly at upper step edges. Surprisingly, in-situ growth measurements at this intermediate temperature range revealed that C60 actually start nucleating from lower step edges, with concomitant formation of Ni terraces underneath. These anomalous thermal dependence of diffusivity and the peculiar growth morphology of C60 on Ni(111) are attributed to C60-induced reconstruction of Ni(111) at higher temperature.

8.
Nat Commun ; 9(1): 2003, 2018 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29784909

RESUMO

Two-dimensional (2D) topological insulators (TIs) are promising platforms for low-dissipation spintronic devices based on the quantum-spin-Hall (QSH) effect, but experimental realization of such systems with a large band gap suitable for room-temperature applications has proven difficult. Here, we report the successful growth on bilayer graphene of a quasi-freestanding WSe2 single layer with the 1T' structure that does not exist in the bulk form of WSe2. Using angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy/spectroscopy (STM/STS), we observe a gap of 129 meV in the 1T' layer and an in-gap edge state located near the layer boundary. The system's 2D TI characters are confirmed by first-principles calculations. The observed gap diminishes with doping by Rb adsorption, ultimately leading to an insulator-semimetal transition. The discovery of this large-gap 2D TI with a tunable band gap opens up opportunities for developing advanced nanoscale systems and quantum devices.

9.
Sci Rep ; 7(1): 12371, 2017 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-28959046

RESUMO

Direct growth of graphene integrated into electronic devices is highly desirable but difficult due to the nominal ~1000 °C chemical vapor deposition (CVD) temperature, which can seriously deteriorate the substrates. Here we report a great reduction of graphene CVD temperature, down to 50 °C on sapphire and 100 °C on polycarbonate, by using dilute methane as the source and molten gallium (Ga) as catalysts. The very low temperature graphene synthesis is made possible by carbon attachment to the island edges of pre-existing graphene nuclei islands, and causes no damages to the substrates. A key benefit of using molten Ga catalyst is the enhanced methane absorption in Ga at lower temperatures; this leads to a surprisingly low apparent reaction barrier of ~0.16 eV below 300 °C. The faster growth kinetics due to a low reaction barrier and a demonstrated low-temperature graphene nuclei transfer protocol can facilitate practical direct graphene synthesis on many kinds of substrates down to 50-100 °C. Our results represent a significant progress in reducing graphene synthesis temperature and understanding its mechanism.

10.
Nat Commun ; 8(1): 516, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28894137

RESUMO

Two-dimensional materials constitute a promising platform for developing nanoscale devices and systems. Their physical properties can be very different from those of the corresponding three-dimensional materials because of extreme quantum confinement and dimensional reduction. Here we report a study of TiTe2 from the single-layer to the bulk limit. Using angle-resolved photoemission spectroscopy and scanning tunneling microscopy and spectroscopy, we observed the emergence of a (2 × 2) charge density wave order in single-layer TiTe2 with a transition temperature of 92 ± 3 K. Also observed was a pseudogap of about 28 meV at the Fermi level at 4.2 K. Surprisingly, no charge density wave transitions were observed in two-layer and multi-layer TiTe2, despite the quasi-two-dimensional nature of the material in the bulk. The unique charge density wave phenomenon in the single layer raises intriguing questions that challenge the prevailing thinking about the mechanisms of charge density wave formation.Due to reduced dimensionality, the properties of 2D materials are often different from their 3D counterparts. Here, the authors identify the emergence of a unique charge density wave (CDW) order in monolayer TiTe2 that challenges the current understanding of CDW formation.

11.
Phys Chem Chem Phys ; 11(10): 1508-14, 2009 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-19240927

RESUMO

Fluorescent nanodiamond (FND) contains nitrogen-vacancy defect centers as fluorophores. The intensity of its fluorescence can be significantly enhanced after deposition of the particle (35 or 140 nm in size) on a nanocrystalline Ag film without a buffer layer. The excellent photostability (i.e. neither photobleaching nor photoblinking) of the material is preserved even on the Ag film. Concurrent decrease of excited state lifetimes and increase of fluorescence intensities indicate that the enhancement results from surface plasmon resonance. Such a fluorescence enhancement effect is diminished when the individual FND particle is wrapped around by DNA molecules, as a result of an increase in the distance between the color-center emitters inside the FND and the nearby Ag nanoparticles. A fluorescence intensity enhancement up to 10-fold is observed for 35 nm FNDs, confirmed by fluorescence lifetime imaging microscopy.

12.
Phys Rev Lett ; 101(12): 127404, 2008 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-18851411

RESUMO

In the rich phase diagram of NaxCoO2, x=0.71 enjoys special stability and is called the Curie-Weiss metal due to its anomalous properties. Similarly, x=0.84 prepared from high temperature melt is a special end point beyond which the system phase separates. Using synchrotron x-ray diffraction on single crystals, we discovered sqrt[12]a and sqrt[13]a superlattice structures which we interpret as the ordering of Na (vacancy) clusters. These results lead to a picture of coexisting local moments and itinerant carriers and form the first step towards understanding the many anomalous properties of cobaltates.

13.
Phys Rev Lett ; 100(20): 206404, 2008 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-18518561

RESUMO

Sodium ion ordering on an in situ cleaved NaxCoO2 (x=0.84) surface has been studied by ultrahigh vacuum scanning tunneling microscopy at room temperature. Three main phases, with p(3 x 3), ( radical7 x radical7), and (2 radical3 x 2 radical3) hexagonal unit cells and a surface Na concentration of 1/3, 3/7, 1/2, respectively, were identified. One surprising finding is that Na trimers act as the basic building blocks that order in long range. The stability of Na trimers is attributed to the increased Na coordination with oxygen as indicated by ab initio calculations, and possibly at finite temperature by configuration entropy.

14.
Phys Rev Lett ; 88(3): 036101, 2002 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-11801073

RESUMO

We present a combined study by scanning tunneling microscopy and atomistic simulations of the emission of dissociated dislocation loops by nanoindentation on a (001) fcc surface. The latter consist of two stacking-fault ribbons bounded by Shockley partials and a stair-rod dislocation. These dissociated loops, which intersect the surface, are shown to originate from loops of interstitial character emitted along the <110> directions and are usually located at hundreds of angstroms away from the indentation point. Simulations reproduce the nucleation and glide of these dislocation loops.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA