Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 495(7440): 205-9, 2013 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-23486059

RESUMO

To create and manipulate non-classical states of light for quantum information protocols, a strong, nonlinear interaction at the single-photon level is required. One approach to the generation of suitable interactions is to couple photons to atoms, as in the strong coupling regime of cavity quantum electrodynamic systems. In these systems, however, the quantum state of the light is only indirectly controlled by manipulating the atoms. A direct photon-photon interaction occurs in so-called Kerr media, which typically induce only weak nonlinearity at the cost of significant loss. So far, it has not been possible to reach the single-photon Kerr regime, in which the interaction strength between individual photons exceeds the loss rate. Here, using a three-dimensional circuit quantum electrodynamic architecture, we engineer an artificial Kerr medium that enters this regime and allows the observation of new quantum effects. We realize a gedanken experiment in which the collapse and revival of a coherent state can be observed. This time evolution is a consequence of the quantization of the light field in the cavity and the nonlinear interaction between individual photons. During the evolution, non-classical superpositions of coherent states (that is, multi-component 'Schrödinger cat' states) are formed. We visualize this evolution by measuring the Husimi Q function and confirm the non-classical properties of these transient states by cavity state tomography. The ability to create and manipulate superpositions of coherent states in such a high-quality-factor photon mode opens perspectives for combining the physics of continuous variables with superconducting circuits. The single-photon Kerr effect could be used in quantum non-demolition measurement of photons, single-photon generation, autonomous quantum feedback schemes and quantum logic operations.

2.
Phys Rev Lett ; 117(25): 250502, 2016 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-28036205

RESUMO

The resonator-induced phase (RIP) gate is an all-microwave multiqubit entangling gate that allows a high degree of flexibility in qubit frequencies, making it attractive for quantum operations in large-scale architectures. We experimentally realize the RIP gate with four superconducting qubits in a three-dimensional circuit-QED architecture, demonstrating high-fidelity controlled-z (cz) gates between all possible pairs of qubits from two different 4-qubit devices in pair subspaces. These qubits are arranged within a wide range of frequency detunings, up to as large as 1.8 GHz. We further show a dynamical multiqubit refocusing scheme in order to isolate out 2-qubit interactions, and combine them to generate a 4-qubit Greenberger-Horne-Zeilinger state.

3.
Sci Rep ; 13(1): 11541, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460767

RESUMO

The functional characterization of different neuronal types has been a longstanding and crucial challenge. With the advent of physical quantum computers, it has become possible to apply quantum machine learning algorithms to translate theoretical research into practical solutions. Previous studies have shown the advantages of quantum algorithms on artificially generated datasets, and initial experiments with small binary classification problems have yielded comparable outcomes to classical algorithms. However, it is essential to investigate the potential quantum advantage using real-world data. To the best of our knowledge, this study is the first to propose the utilization of quantum systems to classify neuron morphologies, thereby enhancing our understanding of the performance of automatic multiclass neuron classification using quantum kernel methods. We examined the influence of feature engineering on classification accuracy and found that quantum kernel methods achieved similar performance to classical methods, with certain advantages observed in various configurations.

4.
Phys Rev Lett ; 108(24): 240502, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23004246

RESUMO

We present a semiclassical method for determining the effective low-energy quantum Hamiltonian of weakly anharmonic superconducting circuits containing mesoscopic Josephson junctions coupled to electromagnetic environments made of an arbitrary combination of distributed and lumped elements. A convenient basis, capturing the multimode physics, is given by the quantized eigenmodes of the linearized circuit and is fully determined by a classical linear response function. The method is used to calculate numerically the low-energy spectrum of a 3D transmon system, and quantitative agreement with measurements is found.

5.
Phys Rev Lett ; 107(24): 240501, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22242979

RESUMO

Superconducting quantum circuits based on Josephson junctions have made rapid progress in demonstrating quantum behavior and scalability. However, the future prospects ultimately depend upon the intrinsic coherence of Josephson junctions, and whether superconducting qubits can be adequately isolated from their environment. We introduce a new architecture for superconducting quantum circuits employing a three-dimensional resonator that suppresses qubit decoherence while maintaining sufficient coupling to the control signal. With the new architecture, we demonstrate that Josephson junction qubits are highly coherent, with T2 ∼ 10 to 20 µs without the use of spin echo, and highly stable, showing no evidence for 1/f critical current noise. These results suggest that the overall quality of Josephson junctions in these qubits will allow error rates of a few 10(-4), approaching the error correction threshold.

6.
Science ; 372(6539)2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33859004

RESUMO

Quantum computing hardware technologies have advanced during the past two decades, with the goal of building systems that can solve problems that are intractable on classical computers. The ability to realize large-scale systems depends on major advances in materials science, materials engineering, and new fabrication techniques. We identify key materials challenges that currently limit progress in five quantum computing hardware platforms, propose how to tackle these problems, and discuss some new areas for exploration. Addressing these materials challenges will require scientists and engineers to work together to create new, interdisciplinary approaches beyond the current boundaries of the quantum computing field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA