RESUMO
Noroviruses (NoVs) are the major global source of acute gastroenteritis (AGE) outbreaks. To detect NoVs, real-time reverse transcription-quantitative PCR (RT-qPCR) assays have been widely employed since the first decade of the 21st century. We developed a redesigned probe, JJV1PM, for RT-qPCR assay detection of NoV genogroup (G) I strains. The new RT-qPCR assay using the JJV1PM-probe showed broader strain reactivity for 10 NoV GI genotypes, while the old method, using the JJV1PT-probe assay, detected only 7 NoV GI genotypes in a validation panel using human fecal specimens. The improved RT-qPCR assay was also successfully applied to water samples. The JJV1PM-probe assay identified 7 NoV GI genotypes, whereas the JJV1PT-probe assay detected only 2 NoV GI genotypes from water samples. Notably, groundwater-borne NoV GI strains detected by the improved JJV1PM-probe assay were associated with groundwater-borne AGE outbreaks in South Korea. The results of this study underscore the importance of the evaluation of RT-qPCR assays using recently circulating NoV strains prior to field application.
Assuntos
Norovirus/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Genótipo , Microbiologia da ÁguaRESUMO
Human astroviruses (HAstVs) occur worldwide and are known to the causative agents of diarrhea in infants and elderly patients with immune dysfunction. This study aimed to identify recombinant HAstV strains and characterize rare genotypes. The full-length genome of a recombinant HAstV strain isolated from the stool sample of a patient with acute gastroenteritis from South Korea was amplified using three pairs of previously designed primers and seven newly designed primers. The recombinant HAstV was 6757-bp long and contained three sequential open reading frames (ORFs), designated as ORF1a (2781 bp), ORF1b (1548 bp), and ORF2 (2349 bp). Our findings suggested that a recombination event had occurred between ORF1b and ORF2 of the isolated strain, with a recombination breakpoint at 4081 bp. To our knowledge, this is the first study to reveal the complete nucleotide sequence of a recombinant HAstV strain from South Korea. Our study findings might be useful for identifying other recombinant HAstV strains and for developing vaccines against this pathogenic virus.
Assuntos
Gastroenterite/virologia , Genoma Viral , Mamastrovirus/genética , Recombinação Genética , Análise de Sequência de RNA/métodos , Antígenos Virais/genética , Infecções por Astroviridae/virologia , Fezes/virologia , Tamanho do Genoma , Genótipo , Humanos , Lactente , Mamastrovirus/imunologia , Mamastrovirus/isolamento & purificação , Fases de Leitura Aberta , Filogenia , RNA Viral/genética , República da CoreiaRESUMO
Src family kinases (SFKs) regulate the completion of cytokinesis through signal transduction pathways that lead to the Rab11-dependent phosphorylation of ERK and its localization to the midbody of cytokinetic cells. We find that UNC119a, a known activator of SFKs, plays essential roles in this signaling pathway. UNC119a localizes to the centrosome in interphase cells and begins to translocate from the spindle pole to the spindle midzone after the onset of mitosis; it then localizes to the intercellular bridge in telophase cells and to the midbody in cytokinetic cells. We show that the midbody localization of UNC119a is dependent on Rab11, and that knocking down UNC119a inhibits the Rab11-dependent phosphorylation and midbody localization of ERK and cytokinesis. Moreover, we demonstrate that UNC119a interacts with a Src family kinase, Fyn and is required for the activation of this kinase. These results suggest that UNC119a plays a key role in the Fyn signal transduction pathway, which regulates the completion of cytokinesis via Rab11.