Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 9(15): e2104296, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35322574

RESUMO

Extracellular vesicles (EV) are an attractive therapy to boost cardiac regeneration. Nevertheless, identification of native EV and corresponding cell platform(s) suitable for therapeutic application, is still a challenge. Here, EV are isolated from key stages of the human induced pluripotent stem cell-cardiomyocyte (hiPSC-CM) differentiation and maturation, i.e., from hiPSC (hiPSC-EV), cardiac progenitors, immature and mature cardiomyocytes, with the aim of identifying a promising cell biofactory for EV production, and pinpoint the genetic signatures of bioactive EV. EV secreted by hiPSC and cardiac derivatives show a typical size distribution profile and the expression of specific EV markers. Bioactivity assays show increased tube formation and migration in HUVEC treated with hiPSC-EV compared to EV from committed cell populations. hiPSC-EV also significantly increase cell cycle activity of hiPSC-CM. Global miRNA expression profiles, obtained by small RNA-seq analysis, corroborate an EV-miRNA pattern indicative of stem cell to cardiomyocyte specification, confirming that hiPSC-EV are enriched in pluripotency-associated miRNA with higher in vitro pro-angiogenic and pro-proliferative properties. In particular, a stemness maintenance miRNA cluster upregulated in hiPSC-EV targets the PTEN/PI3K/AKT pathway, involved in cell proliferation and survival. Overall, the findings validate hiPSC as cell biofactories for EV production for cardiac regenerative applications.


Assuntos
Vesículas Extracelulares , Células-Tronco Pluripotentes Induzidas , MicroRNAs , Vesículas Extracelulares/metabolismo , Humanos , MicroRNAs/genética , Miócitos Cardíacos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo
2.
Front Physiol ; 13: 926528, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784878

RESUMO

Extracellular Vesicles (EV) play a critical role in the regulation of regenerative processes in wounded tissues by mediating cell-to-cell communication. Multiple RNA species have been identified in EV, although their function still lacks understanding. We previously characterized the miRNA content of EV secreted over hiPSC-cardiomyocyte differentiation and found a distinct miRNA expression in hiPSC-EV driving its in vitro bioactivity. In this work, we investigated the piRNA profiles of EV derived from key stages of the hiPSC-CM differentiation and maturation, i.e., from hiPSC (hiPSC-EV), cardiac progenitors (CPC-EV), immature (CMi-EV), and mature (CMm-EV) cardiomyocytes, demonstrating that EV-piRNA expression differs greatly from the miRNA profiles we previously identified. Only four piRNA were significantly deregulated in EV, one in hiPSC-EV, and three in CPC-EV, as determined by differential expression analysis on small RNA-seq data. Our results provide a valuable source of information for further studies aiming at defining the role of piRNA in the bioactivity and therapeutic potential of EV.

3.
Am J Physiol Heart Circ Physiol ; 300(6): H2123-34, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21421816

RESUMO

AMPK activation during ischemia helps the myocardium to cope with the deficit of energy production. As AMPK activity is considered to be impaired in diabetes, we hypothesized that enhancing AMPK activation during ischemia above physiological levels would protect the ischemic diabetic heart through AMPK activation and subsequent inhibition of mitochondrial permeability transition pore (mPTP) opening. Isolated perfused hearts from normoglycemic Wistar or diabetic Goto-Kakizaki (GK) rats (n ≥ 6/group) were subjected to 35 min of ischemia in the presence of 10, 20, and 40 µM of A-769662, a known activator of AMPK, followed by 120 min of reperfusion with normal buffer. Myocardial infarction and AMPK phosphorylation were assessed. The effect of A-769662 on mPTP opening in adult cardiomyocytes isolated from both strains was also determined. A-769662 at 20 µM reduced infarct size in both Wistar (30.5 ± 2.7 vs. 51.8 ± 3.9% vehicle; P < 0.001) and GK hearts (22.7 ± 3.0 vs. 48.5 ± 4.7% vehicle; P < 0.001). This protection was accompanied by a significant increase in AMPK and GSK-3ß phosphorylation. In addition, A-769662 significantly inhibited mPTP opening in both Wistar and GK cardiomyocytes subjected to oxidative stress. We demonstrate that AMPK activation during ischemia via A-769662 reduces myocardial infarct size in both the nondiabetic and diabetic rat heart. Furthermore, this cardioprotective effect appears to be mediated through inhibition of mPTP opening. Our findings suggest that improving AMPK activation during ischemia can be another mechanism for protecting the ischemic heart.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus/metabolismo , Isquemia Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Animais , Compostos de Bifenilo , Células Cultivadas , Modelos Animais de Doenças , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/antagonistas & inibidores , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos , Poro de Transição de Permeabilidade Mitocondrial , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fosforilação , Pironas/farmacologia , Ratos , Ratos Endogâmicos , Ratos Wistar , Tiofenos/farmacologia
4.
Cardiovasc Drugs Ther ; 24(1): 25-32, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20229055

RESUMO

PURPOSE: AMPK plays a crucial role in the regulation of the energy metabolism of the heart. During ischaemia, AMPK activation is a known adaptative prosurvival mechanism that helps to maintain the energy levels of the myocardium. However, it still remains unclear if activation of AMPK during reperfusion is beneficial for the heart. Two known AMPK activators (metformin and AICAR) were used to verify the hypothesis that a transitory activation of AMPK at reperfusion may exert cardioprotection, as reflected in a reduction in myocardial infarct size. METHODS: Perfused rat hearts were subjected to 35 min ischaemia and 120 min reperfusion. Metformin (50 microM) or AICAR (0.5 mM) were added for 15 min at the onset of reperfusion alone or with Compound C (CC, 10 microM), an AMPK inhibitor. Infarct size and alpha-AMPK phosphorylation were measured. RESULTS: Metformin significantly reduced infarct size from 47.8 +/- 1.7% in control to 31.4 +/- 2.9%, an effect abolished by CC when the drugs were given concomitantly. Similarly, AICAR also induced a significant reduction in infarct size to 32.3 +/- 4.8%, an effect also abrogated by CC. However, metformin's protection was not abolished if CC was administered later in reperfusion. In addition, alpha-AMPK phosphorylation was significantly increased in the metformin treated group during the initial 30 min of reperfusion. CONCLUSIONS: Our data demonstrated that, in our ex vivo model of myocardial ischaemia-reperfusion injury, AMPK activation in early reperfusion is associated with a reduction in infarct size.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Ativação Enzimática/efeitos dos fármacos , Infarto/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Aminoimidazol Carboxamida/administração & dosagem , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Aminoimidazol Carboxamida/uso terapêutico , Animais , Coração/efeitos dos fármacos , Coração/fisiologia , Hemodinâmica/fisiologia , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Infarto/etiologia , Infarto/patologia , Masculino , Metformina/administração & dosagem , Metformina/farmacologia , Metformina/uso terapêutico , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/administração & dosagem , Pirazóis/farmacologia , Pirimidinas/administração & dosagem , Pirimidinas/farmacologia , Ratos , Ratos Wistar , Ribonucleotídeos/administração & dosagem , Ribonucleotídeos/farmacologia , Ribonucleotídeos/uso terapêutico
5.
Rev Port Cardiol ; 24(11): 1381-92, 2005 Nov.
Artigo em Inglês, Português | MEDLINE | ID: mdl-16463987

RESUMO

INTRODUCTION: Cardiac mitochondria, as the major source of energy used by the heart, play an important part in the survival of cardiomyocytes undergoing ischemia followed by reperfusion. During ischemia, cardiac mitochondria represent one of the main cellular defense mechanisms, acting as a calcium-sequestering system and maintaining levels of energy production. However, when these cellular mechanisms are overcome, loss of mitochondrial integrity leads not only to the breakdown of energy production, but also to the release of pro-apoptotic factors, thus compromising the survival of cardiac cells. OBJECTIVES: To study the impact of acute ischemia-reperfusion (IR) on myocardial mitochondrial function in an ex-vivo model of global ischemia. METHODS: Wistar rat hearts were divided into two groups: control (165 minutes of perfusion with Krebs-Henseleit solution) and ischemia-reperfusion (IR - 10 minutes perfusion, followed by 35 minutes ischemia and 120 minutes reperfusion). Various parameters of mitochondrial function were assessed: respiratory control ratio (RCR) using a Clark-type oxygen electrode, oxidative stress (using the thiobarbituric acid reactive substances [TBARS] test), and mitochondrial swelling amplitude and calcium uptake, both determined by fluorimetric methods. RESULTS: All mitochondrial parameters were severely affected by IR. The IR group showed a significant decrease in RCR, which was independent of the respiratory substrate used, for each assay. There were no significant differences between the two experimental groups in TBARS production. The control group showed a trend for a decrease in mitochondrial swelling amplitude and an increase in calcium uptake compared to the IR group, in both the absence and presence of cyclosporin A. CONCLUSIONS: In this study, IR significantly altered mitochondrial function (RCR, mitochondrial swelling amplitude and intramitochondrial calcium uptake). This means that during acute myocardial ischemia, every effort should be made to avoid reperfusion injury, given its deleterious consequences for coronary artery disease patients.


Assuntos
Mitocôndrias Cardíacas/metabolismo , Isquemia Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Doença Aguda , Animais , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA