Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
N Engl J Med ; 386(21): 2011-2023, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35544369

RESUMO

BACKGROUND: Vaccination of children to prevent coronavirus disease 2019 (Covid-19) is an urgent public health need. The safety, immunogenicity, and efficacy of the mRNA-1273 vaccine in children 6 to 11 years of age are unknown. METHODS: Part 1 of this ongoing phase 2-3 trial was open label for dose selection; part 2 was an observer-blinded, placebo-controlled expansion evaluation of the selected dose. In part 2, we randomly assigned children (6 to 11 years of age) in a 3:1 ratio to receive two injections of mRNA-1273 (50 µg each) or placebo, administered 28 days apart. The primary objectives were evaluation of the safety of the vaccine in children and the noninferiority of the immune response in these children to that in young adults (18 to 25 years of age) in a related phase 3 trial. Secondary objectives included determination of the incidences of confirmed Covid-19 and severe acute respiratory syndrome coronavirus 2 infection, regardless of symptoms. Interim analysis results are reported. RESULTS: In part 1 of the trial, 751 children received 50-µg or 100-µg injections of the mRNA-1273 vaccine, and on the basis of safety and immunogenicity results, the 50-µg dose level was selected for part 2. In part 2 of the trial, 4016 children were randomly assigned to receive two injections of mRNA-1273 (50 µg each) or placebo and were followed for a median of 82 days (interquartile range, 14 to 94) after the first injection. This dose level was associated with mainly low-grade, transient adverse events, most commonly injection-site pain, headache, and fatigue. No vaccine-related serious adverse events, multisystem inflammatory syndrome in children, myocarditis, or pericarditis were reported as of the data-cutoff date. One month after the second injection (day 57), the neutralizing antibody titer in children who received mRNA-1273 at a 50-µg level was 1610 (95% confidence interval [CI], 1457 to 1780), as compared with 1300 (95% CI, 1171 to 1443) at the 100-µg level in young adults, with serologic responses in at least 99.0% of the participants in both age groups, findings that met the prespecified noninferiority success criterion. Estimated vaccine efficacy was 88.0% (95% CI, 70.0 to 95.8) against Covid-19 occurring 14 days or more after the first injection, at a time when B.1.617.2 (delta) was the dominant circulating variant. CONCLUSIONS: Two 50-µg doses of the mRNA-1273 vaccine were found to be safe and effective in inducing immune responses and preventing Covid-19 in children 6 to 11 years of age; these responses were noninferior to those in young adults. (Funded by the Biomedical Advanced Research and Development Authority and the National Institute of Allergy and Infectious Diseases; KidCOVE ClinicalTrials.gov number, NCT04796896.).


Assuntos
Vacina de mRNA-1273 contra 2019-nCoV , COVID-19 , Vacina de mRNA-1273 contra 2019-nCoV/efeitos adversos , Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Vacina de mRNA-1273 contra 2019-nCoV/uso terapêutico , Adolescente , Adulto , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , COVID-19/sangue , COVID-19/complicações , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/uso terapêutico , Criança , Método Duplo-Cego , Humanos , SARS-CoV-2 , Síndrome de Resposta Inflamatória Sistêmica , Eficácia de Vacinas , Adulto Jovem
2.
N Engl J Med ; 387(18): 1673-1687, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36260859

RESUMO

BACKGROUND: The safety, reactogenicity, immunogenicity, and efficacy of the mRNA-1273 coronavirus disease 2019 (Covid-19) vaccine in young children are unknown. METHODS: Part 1 of this ongoing phase 2-3 trial was open label for dose selection; part 2 was an observer-blinded, placebo-controlled evaluation of the selected dose. In part 2, we randomly assigned young children (6 months to 5 years of age) in a 3:1 ratio to receive two 25-µg injections of mRNA-1273 or placebo, administered 28 days apart. The primary objectives were to evaluate the safety and reactogenicity of the vaccine and to determine whether the immune response in these children was noninferior to that in young adults (18 to 25 years of age) in a related phase 3 trial. Secondary objectives were to determine the incidences of Covid-19 and severe acute respiratory syndrome coronavirus 2 infection after administration of mRNA-1273 or placebo. RESULTS: On the basis of safety and immunogenicity results in part 1 of the trial, the 25-µg dose was evaluated in part 2. In part 2, 3040 children 2 to 5 years of age and 1762 children 6 to 23 months of age were randomly assigned to receive two 25-µg injections of mRNA-1273; 1008 children 2 to 5 years of age and 593 children 6 to 23 months of age were randomly assigned to receive placebo. The median duration of follow-up after the second injection was 71 days in the 2-to-5-year-old cohort and 68 days in the 6-to-23-month-old cohort. Adverse events were mainly low-grade and transient, and no new safety concerns were identified. At day 57, neutralizing antibody geometric mean concentrations were 1410 (95% confidence interval [CI], 1272 to 1563) among 2-to-5-year-olds and 1781 (95% CI, 1616 to 1962) among 6-to-23-month-olds, as compared with 1391 (95% CI, 1263 to 1531) among young adults, who had received 100-µg injections of mRNA-1273, findings that met the noninferiority criteria for immune responses for both age cohorts. The estimated vaccine efficacy against Covid-19 was 36.8% (95% CI, 12.5 to 54.0) among 2-to-5-year-olds and 50.6% (95% CI, 21.4 to 68.6) among 6-to-23-month-olds, at a time when B.1.1.529 (omicron) was the predominant circulating variant. CONCLUSIONS: Two 25-µg doses of the mRNA-1273 vaccine were found to be safe in children 6 months to 5 years of age and elicited immune responses that were noninferior to those in young adults. (Funded by the Biomedical Advanced Research and Development Authority and National Institute of Allergy and Infectious Diseases; KidCOVE ClinicalTrials.gov number, NCT04796896.).


Assuntos
Vacina de mRNA-1273 contra 2019-nCoV , COVID-19 , Imunogenicidade da Vacina , Criança , Pré-Escolar , Humanos , Lactente , Adulto Jovem , Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Vacina de mRNA-1273 contra 2019-nCoV/uso terapêutico , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/epidemiologia , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Método Duplo-Cego , Imunogenicidade da Vacina/imunologia , Eficácia de Vacinas , Resultado do Tratamento , Adolescente , Adulto
3.
N Engl J Med ; 385(24): 2241-2251, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34379915

RESUMO

BACKGROUND: The incidence of coronavirus disease 2019 (Covid-19) among adolescents between 12 and 17 years of age was approximately 900 per 100,000 population from April 1 through June 11, 2021. The safety, immunogenicity, and efficacy of the mRNA-1273 vaccine in adolescents are unknown. METHODS: In this ongoing phase 2-3, placebo-controlled trial, we randomly assigned healthy adolescents (12 to 17 years of age) in a 2:1 ratio to receive two injections of the mRNA-1273 vaccine (100 µg in each) or placebo, administered 28 days apart. The primary objectives were evaluation of the safety of mRNA-1273 in adolescents and the noninferiority of the immune response in adolescents as compared with that in young adults (18 to 25 years of age) in a phase 3 trial. Secondary objectives included the efficacy of mRNA-1273 in preventing Covid-19 or asymptomatic severe acute respiratory syndrome coronavirus 2 infection. RESULTS: A total of 3732 participants were randomly assigned to receive mRNA-1273 (2489 participants) or placebo (1243 participants). In the mRNA-1273 group, the most common solicited adverse reactions after the first or second injections were injection-site pain (in 93.1% and 92.4%, respectively), headache (in 44.6% and 70.2%, respectively), and fatigue (in 47.9% and 67.8%, respectively); in the placebo group, the most common solicited adverse reactions after the first or second injections were injection-site pain (in 34.8% or 30.3%, respectively), headache (in 38.5% and 30.2%, respectively), and fatigue (in 36.6% and 28.9%, respectively). No serious adverse events related to mRNA-1273 or placebo were noted. The geometric mean titer ratio of pseudovirus neutralizing antibody titers in adolescents relative to young adults was 1.08 (95% confidence interval [CI], 0.94 to 1.24), and the absolute difference in serologic response was 0.2 percentage points (95% CI, -1.8 to 2.4), which met the noninferiority criterion. No cases of Covid-19 with an onset of 14 days after the second injection were reported in the mRNA-1273 group, and four cases occurred in the placebo group. CONCLUSIONS: The mRNA-1273 vaccine had an acceptable safety profile in adolescents. The immune response was similar to that in young adults, and the vaccine was efficacious in preventing Covid-19. (Funded by Moderna and the Biomedical Advanced Research and Development Authority; Teen COVE ClinicalTrials.gov number, NCT04649151.).


Assuntos
Vacina de mRNA-1273 contra 2019-nCoV , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/prevenção & controle , Imunogenicidade da Vacina , Vacina de mRNA-1273 contra 2019-nCoV/administração & dosagem , Vacina de mRNA-1273 contra 2019-nCoV/efeitos adversos , Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Adolescente , Criança , Feminino , Humanos , Masculino , Método Simples-Cego , Eficácia de Vacinas
4.
N Engl J Med ; 384(5): 403-416, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33378609

RESUMO

BACKGROUND: Vaccines are needed to prevent coronavirus disease 2019 (Covid-19) and to protect persons who are at high risk for complications. The mRNA-1273 vaccine is a lipid nanoparticle-encapsulated mRNA-based vaccine that encodes the prefusion stabilized full-length spike protein of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes Covid-19. METHODS: This phase 3 randomized, observer-blinded, placebo-controlled trial was conducted at 99 centers across the United States. Persons at high risk for SARS-CoV-2 infection or its complications were randomly assigned in a 1:1 ratio to receive two intramuscular injections of mRNA-1273 (100 µg) or placebo 28 days apart. The primary end point was prevention of Covid-19 illness with onset at least 14 days after the second injection in participants who had not previously been infected with SARS-CoV-2. RESULTS: The trial enrolled 30,420 volunteers who were randomly assigned in a 1:1 ratio to receive either vaccine or placebo (15,210 participants in each group). More than 96% of participants received both injections, and 2.2% had evidence (serologic, virologic, or both) of SARS-CoV-2 infection at baseline. Symptomatic Covid-19 illness was confirmed in 185 participants in the placebo group (56.5 per 1000 person-years; 95% confidence interval [CI], 48.7 to 65.3) and in 11 participants in the mRNA-1273 group (3.3 per 1000 person-years; 95% CI, 1.7 to 6.0); vaccine efficacy was 94.1% (95% CI, 89.3 to 96.8%; P<0.001). Efficacy was similar across key secondary analyses, including assessment 14 days after the first dose, analyses that included participants who had evidence of SARS-CoV-2 infection at baseline, and analyses in participants 65 years of age or older. Severe Covid-19 occurred in 30 participants, with one fatality; all 30 were in the placebo group. Moderate, transient reactogenicity after vaccination occurred more frequently in the mRNA-1273 group. Serious adverse events were rare, and the incidence was similar in the two groups. CONCLUSIONS: The mRNA-1273 vaccine showed 94.1% efficacy at preventing Covid-19 illness, including severe disease. Aside from transient local and systemic reactions, no safety concerns were identified. (Funded by the Biomedical Advanced Research and Development Authority and the National Institute of Allergy and Infectious Diseases; COVE ClinicalTrials.gov number, NCT04470427.).


Assuntos
Vacinas contra COVID-19 , COVID-19/prevenção & controle , SARS-CoV-2 , Vacina de mRNA-1273 contra 2019-nCoV , Adolescente , Adulto , Idoso , COVID-19/diagnóstico , COVID-19/imunologia , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/imunologia , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Gravidade do Paciente , Método Simples-Cego , Glicoproteína da Espícula de Coronavírus , Resultado do Tratamento , Adulto Jovem
5.
N Engl J Med ; 385(19): 1774-1785, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34551225

RESUMO

BACKGROUND: At interim analysis in a phase 3, observer-blinded, placebo-controlled clinical trial, the mRNA-1273 vaccine showed 94.1% efficacy in preventing coronavirus disease 2019 (Covid-19). After emergency use of the vaccine was authorized, the protocol was amended to include an open-label phase. Final analyses of efficacy and safety data from the blinded phase of the trial are reported. METHODS: We enrolled volunteers who were at high risk for Covid-19 or its complications; participants were randomly assigned in a 1:1 ratio to receive two intramuscular injections of mRNA-1273 (100 µg) or placebo, 28 days apart, at 99 centers across the United States. The primary end point was prevention of Covid-19 illness with onset at least 14 days after the second injection in participants who had not previously been infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The data cutoff date was March 26, 2021. RESULTS: The trial enrolled 30,415 participants; 15,209 were assigned to receive the mRNA-1273 vaccine, and 15,206 to receive placebo. More than 96% of participants received both injections, 2.3% had evidence of SARS-CoV-2 infection at baseline, and the median follow-up was 5.3 months in the blinded phase. Vaccine efficacy in preventing Covid-19 illness was 93.2% (95% confidence interval [CI], 91.0 to 94.8), with 55 confirmed cases in the mRNA-1273 group (9.6 per 1000 person-years; 95% CI, 7.2 to 12.5) and 744 in the placebo group (136.6 per 1000 person-years; 95% CI, 127.0 to 146.8). The efficacy in preventing severe disease was 98.2% (95% CI, 92.8 to 99.6), with 2 cases in the mRNA-1273 group and 106 in the placebo group, and the efficacy in preventing asymptomatic infection starting 14 days after the second injection was 63.0% (95% CI, 56.6 to 68.5), with 214 cases in the mRNA-1273 group and 498 in the placebo group. Vaccine efficacy was consistent across ethnic and racial groups, age groups, and participants with coexisting conditions. No safety concerns were identified. CONCLUSIONS: The mRNA-1273 vaccine continued to be efficacious in preventing Covid-19 illness and severe disease at more than 5 months, with an acceptable safety profile, and protection against asymptomatic infection was observed. (Funded by the Biomedical Advanced Research and Development Authority and the National Institute of Allergy and Infectious Diseases; COVE ClinicalTrials.gov number, NCT04470427.).


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Imunogenicidade da Vacina , Vacina de mRNA-1273 contra 2019-nCoV , Adolescente , Adulto , Idoso , COVID-19/epidemiologia , Vacinas contra COVID-19/efeitos adversos , Seguimentos , Humanos , Imunização Secundária , Incidência , Análise de Intenção de Tratamento , Masculino , Pessoa de Meia-Idade , Gravidade do Paciente , Método Simples-Cego , Resultado do Tratamento , Adulto Jovem
6.
Clin Infect Dis ; 76(2): 271-280, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36130187

RESUMO

BACKGROUND: The reactogenicity and immunogenicity of coronavirus disease 2019 (COVID-19) vaccines are well studied. Little is known regarding the relationship between immunogenicity and reactogenicity of COVID-19 vaccines. METHODS: This study assessed the association between immunogenicity and reactogenicity after 2 mRNA-1273 (100 µg) injections in 1671 total adolescent and adult participants (≥12 years) from the primary immunogenicity sets of the blinded periods of the Coronavirus Efficacy (COVE) and TeenCOVE trials. Associations between immunogenicity through day 57 and solicited adverse reactions (ARs) after the first and second injections of mRNA-1273 were evaluated among participants with and without solicited ARs using linear mixed-effects models. RESULTS: mRNA-1273 reactogenicity in this combined analysis set was similar to that reported for these trials. The vaccine elicited high neutralizing antibody (nAb) geometric mean titers (GMTs) in evaluable participants. GMTs at day 57 were significantly higher in participants who experienced solicited systemic ARs after the second injection (1227.2 [1164.4-1293.5]) than those who did not (980.1 [886.8-1083.2], P = .001) and were associated with fever, chills, headache, fatigue, myalgia, and arthralgia. Significant associations with local ARs were not found. CONCLUSIONS: These data show an association of systemic ARs with increased nAb titers following a second mRNA-1273 injection. While these data indicate systemic ARs are associated with increased antibody titers, high nAb titers were observed in participants after both injections, consistent with the immunogenicity and efficacy in these trials. These results add to the body of evidence regarding the relationship of immunogenicity and reactogenicity and can contribute toward the design of future mRNA vaccines.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adulto , Adolescente , Humanos , Vacinas contra COVID-19/efeitos adversos , Vacina de mRNA-1273 contra 2019-nCoV , SARS-CoV-2 , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Imunogenicidade da Vacina , Anticorpos Antivirais
7.
J Infect Dis ; 226(10): 1731-1742, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-35535503

RESUMO

BACKGROUND: Messenger RNA (mRNA)-1273 vaccine demonstrated 93.2% efficacy against coronavirus disease 2019 (COVID-19) in the Coronavirus Efficacy (COVE) trial. The humoral immunogenicity results are now reported. METHODS: Participants received 2 mRNA-1273 (100 µg) or placebo injections, 28 days apart. Immune responses were evaluated in a prespecified, randomly selected per-protocol immunogenicity population (n = 272 placebo; n = 1185 mRNA-1273). Serum binding antibodies (bAbs) and neutralizing antibodies (nAbs) to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-spike protein were assessed at days 1, 29, and 57 by baseline SARS-CoV-2-negative (n = 1197) and SARS-CoV-2-positive (n = 260) status, age, and sex. RESULTS: SARS-CoV-2-negative vaccinees had bAb geometric mean AU/mL levels of 35 753 at day 29 that increased to 316 448 at day 57 and nAb inhibitory dilution 50% titers of 55 at day 29 that rose to 1081 at day 57. In SARS-CoV-2-positive vacinees, the first mRNA-1273 injection elicited bAb and nAb levels that were 11-fold (410 049) and 27-fold (1479) higher than in SARS-CoV-2-negative vaccinees, respectively, and were comparable to levels after 2 injections in uninfected participants. Findings were generally consistent by age and sex. CONCLUSIONS: mRNA-1273 elicited robust serologic immune responses across age, sex, and SARS-CoV-2 status, consistent with its high COVID-19 efficacy. Higher immune responses in those previously infected support a booster-type effect. Clinical Trials Registration. NCT04470427.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Vacina de mRNA-1273 contra 2019-nCoV , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Imunogenicidade da Vacina , RNA Mensageiro , Glicoproteína da Espícula de Coronavírus
8.
J Virol ; 95(23): e0131321, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34549975

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has led to growing concerns over increased transmissibility and the ability of some variants to partially escape immunity. Sera from participants immunized on a prime-boost schedule with the mRNA-1273 COVID-19 vaccine were tested for neutralizing activity against several SARS-CoV-2 variants, including variants of concern (VOCs) and variants of interest (VOIs), compared to neutralization of the wild-type SARS-CoV-2 virus (designated D614G). Results showed minimal, statistically nonsignificant effects on neutralization titers against the B.1.1.7 (Alpha) variant (1.2-fold reduction compared with D614G); other VOCs, such as B.1.351 (Beta, including B.1.351-v1, B.1.351-v2, and B.1.351-v3), P.1 (Gamma), and B.1.617.2 (Delta), showed significantly decreased neutralization titers ranging from 2.1-fold to 8.4-fold reductions compared with D614G, although all remained susceptible to mRNA-1273-elicited serum neutralization. IMPORTANCE In light of multiple variants of SARS-CoV-2 that have been documented globally during the COVID-19 pandemic, it remains important to continually assess the ability of currently available vaccines to confer protection against newly emerging variants. Data presented herein indicate that immunization with the mRNA-1273 COVID-19 vaccine produces neutralizing antibodies against key emerging variants tested, including variants of concern and variants of interest. While the serum neutralization elicited by mRNA-1273 against most variants tested was reduced compared with that against the wild-type virus, the level of neutralization is still expected to be protective. Such data are crucial to inform ongoing and future vaccination strategies to combat COVID-19.


Assuntos
Anticorpos Neutralizantes/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Pandemias/prevenção & controle , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacina de mRNA-1273 contra 2019-nCoV , Adulto , Anticorpos Antivirais/imunologia , Feminino , Humanos , Masculino , Mutação , Testes de Neutralização , Vacinação
12.
Proc Natl Acad Sci U S A ; 112(48): 14823-8, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26627237

RESUMO

Factor H binding protein (FHbp) is part of two vaccines recently licensed for prevention of sepsis and meningitis caused by serogroup B meningococci. FHbp is classified in three phylogenic variant groups that have limited antigenic cross-reactivity, and FHbp variants in one of the groups have low thermal stability. In the present study, we replaced two amino acid residues, R130 and D133, in a stable FHbp variant with their counterparts (L and G) from a less stable variant. The single and double mutants decreased thermal stability of the amino- (N-) terminal domain compared with the wild-type protein as measured by scanning calorimetry. We introduced the converse substitutions, L130R and G133D, in a less stable wild-type FHbp variant, which increased the transition midpoint (Tm) for the N-terminal domain by 8 and 12 °C; together the substitutions increased the Tm by 21 °C. We determined the crystal structure of the double mutant FHbp to 1.6 Å resolution, which showed that R130 and D133 mediated multiple electrostatic interactions. Monoclonal antibodies specific for FHbp epitopes in the N-terminal domain had higher binding affinity for the recombinant double mutant by surface plasmon resonance and to the mutant expressed on meningococci by flow cytometry. The double mutant also had decreased binding of human complement Factor H, which in previous studies increased the protective antibody responses. The stabilized mutant FHbp thus has the potential to stabilize protective epitopes and increase the protective antibody responses to recombinant FHbp vaccines or native outer membrane vesicle vaccines with overexpressed FHbp.


Assuntos
Substituição de Aminoácidos , Antígenos de Bactérias/química , Proteínas de Bactérias/química , Vacinas Meningocócicas/química , Neisseria meningitidis Sorogrupo B , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Cristalografia por Raios X , Temperatura Alta , Humanos , Vacinas Meningocócicas/genética , Estabilidade Proteica
13.
Infect Immun ; 84(2): 452-8, 2016 02.
Artigo em Inglês | MEDLINE | ID: mdl-26597984

RESUMO

Neisserial surface protein A (NspA) is a highly conserved outer membrane protein previously investigated as a meningococcal vaccine candidate. Despite eliciting serum bactericidal activity in mice, a recombinant NspA vaccine failed to elicit serum bactericidal antibodies in a phase 1 clinical trial in humans. The discordant results may be explained by the recent discovery that NspA is a human-specific ligand of the complement inhibitor factor H (FH). Therefore, in humans but not mice, NspA would be expected to form a complex with FH, which could impair human anti-NspA protective antibody responses. To investigate this question, we immunized human FH transgenic BALB/c mice with three doses of recombinant NspA expressed in Escherichia coli microvesicles, with each dose being separated by 3 weeks. Three of 12 (25%) transgenic mice and 13 of 14 wild-type mice responded with bactericidal titers of ≥1:10 in postimmunization sera (P = 0.0008, Fisher's exact test). In contrast, human FH transgenic and wild-type mice immunized with a control meningococcal native outer membrane vesicle vaccine had similar serum bactericidal antibody responses directed at PorA, which is not known to bind human FH, and a mutant factor H binding protein (FHbp) antigen with a >50-fold lower level of FH binding than wild-type FHbp antigen binding.Thus, human FH can impair anti-NspA serum bactericidal antibody responses, which may explain the poor immunogenicity of the NspA vaccine previously tested in humans. A mutant NspA vaccine engineered to have decreased binding to human FH may increase protective antibody responses in humans.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Animais , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Fator H do Complemento/genética , Fator H do Complemento/imunologia , Fator H do Complemento/metabolismo , Escherichia coli/genética , Efeito Fundador , Humanos , Imunização , Vacinas Meningocócicas/imunologia , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Porinas/imunologia , Proteínas Recombinantes/imunologia , Ensaios de Anticorpos Bactericidas Séricos
14.
Infect Immun ; 83(4): 1536-45, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25644002

RESUMO

Among 25 serogroup B Neisseria meningitidis clinical isolates, we identified four (16%) with high factor H binding protein (FHbp) expression that were resistant to complement-mediated bactericidal activity of sera from mice immunized with recombinant FHbp vaccines. Two of the four isolates had evidence of human FH-dependent complement downregulation independent of FHbp. Since alternative complement pathway recruitment is critical for anti-FHbp bactericidal activity, we hypothesized that in these two isolates binding of FH to ligands other than FHbp contributes to anti-FHbp bactericidal resistance. Knocking out NspA, a known meningococcal FH ligand, converted both resistant isolates to anti-FHbp susceptible isolates. The addition of a nonbactericidal anti-NspA monoclonal antibody to the bactericidal reaction also increased anti-FHbp bactericidal activity. To identify a role for FH ligands other than NspA or FHbp in resistance, we created double NspA/FHbp knockout mutants. Mutants from both resistant isolates bound 10-fold more recombinant human FH domains 6 and 7 fused to Fc than double knockout mutants prepared from two sensitive meningococcal isolates. In light of recent studies showing functional FH-PorB2 interactions, we hypothesized that PorB3 from the resistant isolates recruited FH. Allelic exchange of porB3 from a resistant isolate to a sensitive isolate increased resistance of the sensitive isolate to anti-FHbp bactericidal activity (and vice versa). Thus, some PorB3 variants functionally bind human FH, which in the presence of NspA enhances anti-FHbp resistance. Combining anti-NspA antibodies with anti-FHbp antibodies can overcome resistance. Meningococcal vaccines that target both NspA and FHbp are likely to confer greater protection than either antigen alone.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas de Bactérias/imunologia , Fator H do Complemento/imunologia , Neisseria meningitidis Sorogrupo B/imunologia , Porinas/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Sequência de Bases , Técnicas de Inativação de Genes , Humanos , Meningite Meningocócica/imunologia , Meningite Meningocócica/prevenção & controle , Vacinas Meningocócicas/imunologia , Camundongos , Mutação , Neisseria meningitidis Sorogrupo B/isolamento & purificação , Ligação Proteica , Ratos , Ratos Wistar , Análise de Sequência de DNA
15.
PLoS Pathog ; 8(5): e1002688, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22589720

RESUMO

The binding of human complement inhibitors to vaccine antigens in vivo could diminish their immunogenicity. A meningococcal ligand for the complement down-regulator, factor H (fH), is fH-binding protein (fHbp), which is specific for human fH. Vaccines containing recombinant fHbp or native outer membrane vesicles (NOMV) from mutant strains with over-expressed fHbp are in clinical development. In a previous study in transgenic mice, the presence of human fH impaired the immunogenicity of a recombinant fHbp vaccine. In the present study, we prepared two NOMV vaccines from mutant group B strains with over-expressed wild-type fHbp or an R41S mutant fHbp with no detectable fH binding. In wild-type mice in which mouse fH did not bind to fHbp in either vaccine, the NOMV vaccine with wild-type fHbp elicited 2-fold higher serum IgG anti-fHbp titers (P = 0.001) and 4-fold higher complement-mediated bactericidal titers against a PorA-heterologous strain than the NOMV with the mutant fHbp (P = 0.003). By adsorption, the bactericidal antibodies were shown to be directed at fHbp. In transgenic mice in which human fH bound to the wild-type fHbp but not to the R41S fHbp, the NOMV vaccine with the mutant fHbp elicited 5-fold higher serum IgG anti-fHbp titers (P = 0.002), and 19-fold higher bactericidal titers than the NOMV vaccine with wild-type fHbp (P = 0.001). Thus, in mice that differed only by the presence of human fH, the respective results with the two vaccines were opposite. The enhanced bactericidal activity elicited by the mutant fHbp vaccine in the presence of human fH far outweighed the loss of immunogenicity of the mutant protein in wild-type animals. Engineering fHbp not to bind to its cognate complement inhibitor, therefore, may increase vaccine immunogenicity in humans.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas de Bactérias/imunologia , Vacinas Meningocócicas/imunologia , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Fator H do Complemento/imunologia , Feminino , Humanos , Imunoglobulina G/sangue , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Neisseria meningitidis/imunologia , Neisseria meningitidis/patogenicidade , Ligação Proteica/genética , Proteínas Recombinantes/imunologia , Ensaios de Anticorpos Bactericidas Séricos
16.
Front Immunol ; 15: 1285278, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562934

RESUMO

Background: Characterizing the antibody epitope profiles of messenger RNA (mRNA)-based vaccines against SARS-CoV-2 can aid in elucidating the mechanisms underlying the antibody-mediated immune responses elicited by these vaccines. Methods: This study investigated the distinct antibody epitopes toward the SARS-CoV-2 spike (S) protein targeted after a two-dose primary series of mRNA-1273 followed by a booster dose of mRNA-1273 or a variant-updated vaccine among serum samples from clinical trial adult participants. Results: Multiple S-specific epitopes were targeted after primary vaccination; while signal decreased over time, a booster dose after >6 months largely revived waning antibody signals. Epitope identity also changed after booster vaccination in some subjects, with four new S-specific epitopes detected with stronger signals after boosting than with primary vaccination. Notably, the strength of antibody responses after booster vaccination differed by the exact vaccine formulation, with variant-updated mRNA-1273.211 and mRNA-1273.617.2 booster formulations inducing significantly stronger S-specific signals than a mRNA-1273 booster. Conclusion: Overall, these results identify key S-specific epitopes targeted by antibodies induced by mRNA-1273 primary and variant-updated booster vaccination.


Assuntos
Vacina de mRNA-1273 contra 2019-nCoV , Vacinas contra COVID-19 , Adulto , Humanos , Anticorpos , Vacinação , Epitopos , RNA Mensageiro/genética , SARS-CoV-2 , Vacinas de mRNA
17.
Infect Dis Ther ; 12(1): 177-191, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36376733

RESUMO

INTRODUCTION: There is a need for automated, high-throughput assays to quantify immune response after SARS-CoV-2 vaccination. This study assessed the combined utility of the Elecsys® Anti-SARS-CoV-2 S (ACOV2S) and the Elecsys Anti-SARS-CoV-2 (ACOV2N) assays using samples from the mRNA-1273 (Spikevax™) phase 2 trial (NCT04405076). METHODS: Samples from 593 healthy participants in two age cohorts (18-54 and ≥ 55 years), who received two injections with placebo (n = 198) or mRNA-1273 (50 µg [n = 197] or 100 µg [n = 198]), were collected at days 1 (first vaccination), 15, 29 (second vaccination), 43, and 57. ACOV2S results were used to assess humoral response to vaccination in different subgroups and were compared to live virus microneutralization assay. Samples from patients with either previous or concomitant infection (identified per ACOV2N) were analyzed separately. RESULTS: Receptor-binding domain-specific antibodies were readily detectable by ACOV2S for the vast majority of participants (174/189, 92.1% [50 µg dose] and 178/192, 92.7% [100 µg dose]) at the first post-vaccination assessment, with non-converters predominantly older in age. Seroconversion for all participants was observed at day 29 (before the second vaccine dose). Two weeks after the first dose, geometric mean concentration (GMC) of antibody levels was 1.37-fold higher in the 100 versus 50 µg group (p = 0.0098), reducing to 1.09-fold 2 weeks after the second dose (p = 0.0539, n.s.). In both dose groups, a more pronounced response was observed in the younger versus older age group on day 15 (50 µg, 2.49-fold [p < 0.0001]; 100 µg, 3.94-fold [p < 0.0001] higher GMC, respectively), and day 29 (1.93-fold, p = 0.0002, and 2.44-fold, p < 0.0001). Eight subjects had previous or concomitant SARS-CoV-2 infection; vaccination boosted their humoral response to very high ACOV2S results compared to infection-naïve recipients. ACOV2S strongly correlated with microneutralization (Pearson's r = 0.779; p < 0.0001), including good qualitative agreement. CONCLUSION: These results confirmed that ACOV2S is a highly valuable assay for tracking vaccine-related immune responses. Combined application with ACOV2N enables monitoring for breakthrough infection or stratification of previous natively infected individuals. The adaptive measuring range and high resolution of ACOV2S allow for early identification of seroconversion and resolution of very high titers and longitudinal differences between subgroups. Additionally, good correlation with live virus microneutralization suggests that ACOV2S is a reliable estimate of neutralization capacity in routine diagnostic settings.

18.
Lancet Infect Dis ; 23(5): 621-633, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36682364

RESUMO

BACKGROUND: Developing a safe and immunogenic vaccine against Zika virus remains an unmet medical need. We did two phase 1 studies that evaluated the safety and immunogenicity of two mRNA-based Zika virus vaccines (mRNA-1325 and mRNA-1893) in adults. METHODS: Two randomised, placebo-controlled, dose-ranging, multicentre, phase 1 trials, one of mRNA-1325 (mRNA-1325 trial) and one of mRNA-1893 (mRNA-1893 trial), were done. For both studies, eligible participants were healthy adults (aged 18-49 years) who were flavivirus seronegative or flavivirus seropositive at baseline. Participants in the mRNA-1325 trial, which was done at three centres in the USA, were randomly assigned centrally (1:4), using a randomisation table, to the placebo group or one of three mRNA-1325 dose groups (10, 25, or 100 µg). All participants received two doses. The mRNA-1325 vaccine encoded the premembrane and envelope E structural proteins (prME) from a Micronesia 2007 Zika virus isolate. Participants in the mRNA-1893 trial, which was done at three centres in the USA and one centre in Puerto Rico, were randomly assigned (1:4) to the placebo group or one of four mRNA-1893 dose groups (10, 30, 100, or 250 µg) using centralised interactive response technology. All participants in the mRNA-1893 trial received dose one on day 1 and then dose two on day 29. The mRNA-1893 vaccine encoded the prME from the RIO-U1 Zika virus isolate. Safety was the primary outcome of each study, which was evaluated in the respective safety populations (mRNA-1325 trial: participants who received at least one dose and provided safety data; mRNA-1893 trial: participants who received at least one dose) and the solicited safety population (mRNA-1893 trial only: received at least 1 dose and contributed solicited adverse reaction data). Endpoints in both trials included solicited adverse reactions within 7 days after vaccination and unsolicited adverse events within 28 days after vaccination. The secondary outcome of both trials was immunogenicity assessed by Zika virus-specific neutralising antibodies (nAbs) in the per-protocol populations in either trial (participants with no major protocol deviations received full dose[s] of assigned dose level within the acceptable time window, had samples drawn within acceptable time window, and had prevaccination and corresponding post-vaccination serum samples for testing). These were descriptive studies, with no formal hypothesis testing in either trial. Both trials are registered with ClinicalTrials.gov, NCT03014089 (mRNA-1325 trial) and NCT04064905 (mRNA-1893 trial). FINDINGS: The mRNA-1325 trial was done from Dec 14, 2016, to Aug 16, 2018. 90 participants were enrolled: 53 (59%) participants were women and 37 (41%) were men; 84 (93%) were White; and 74 (82%) were not Hispanic or Latino. All three dose levels of mRNA-1325 (10, 25, and 100 µg) were generally well tolerated, but the vaccine elicited poor Zika virus-specific nAb responses. At 28 days after dose two, geometric mean titres (GMTs) were highest for mRNA-1325 10 µg (10·3 [95% CI 5·9-18·2]). The mRNA-1893 trial was done from July 23, 2019, to March 22, 2021. 120 participants (70 [58%] women and 50 [42%] men) were enrolled, most participants were White (89 [74%]), and not Hispanic or Latino (91 [76%]). In the mRNA-1893 trial, solicited adverse reactions in participants who received a vaccine were mostly grade 1 or 2 and occurred more frequently at higher dose levels and after dose two. No participants withdrew due to an unsolicited treatment-emergent adverse event and most of these events were not treatment related. On day 57, all evaluated mRNA-1893 dose levels induced robust Zika virus-specific nAb responses, independent of flavivirus serostatus, that persisted until month 13. At day 57 in participants who were flavivirus seronegative, plaque reduction neutralisation titre test nAb GMTs were highest for mRNA-1893 100 µg (454·2 [330·0-619·6]); in participants who were flavivirus seropositive, GMTs were highest for mRNA-1893 10 µg (224·1 [43·5-1153·5]) and mRNA-1893 100 µg (190·5 [19·2-1887·2]). INTERPRETATION: These findings support the continued development of mRNA-1893 against Zika virus, which was well tolerated at all evaluated dose levels and induced strong Zika virus-specific serum nAb responses after two doses, regardless of baseline flavivirus serostatus. FUNDING: Biomedical Advanced Research and Development Authority and Moderna.


Assuntos
Flavivirus , Infecção por Zika virus , Zika virus , Masculino , Adulto , Humanos , Feminino , Zika virus/genética , Método Duplo-Cego , Vacinação , Porto Rico , Imunogenicidade da Vacina , Infecção por Zika virus/prevenção & controle , Anticorpos Antivirais
19.
Open Forum Infect Dis ; 10(3): ofad069, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36895286

RESUMO

Background: Hybrid immunity is associated with more durable protection against coronavirus disease 2019 (COVID-19). We describe the antibody responses following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in vaccinated and unvaccinated individuals. Methods: The 55 vaccine arm COVID-19 cases diagnosed during the blinded phase of the Coronavirus Efficacy trial were matched with 55 placebo arm COVID-19 cases. Pseudovirus neutralizing antibody (nAb) activity to the ancestral strain and binding antibody (bAb) responses to nucleocapsid and spike antigens (ancestral and variants of concern [VOCs]) were assessed on disease day 1 (DD1) and 28 days later (DD29). Results: The primary analysis set was 46 vaccine cases and 49 placebo cases with COVID-19 at least 57 days post-first dose. For vaccine group cases, there was a 1.88-fold rise in ancestral antispike bAbs 1 month post-disease onset, although 47% had no increase. The vaccine-to-placebo geometric mean ratios for DD29 antispike and antinucleocapsid bAbs were 6.9 and 0.04, respectively. DD29 mean bAb levels were higher for vaccine vs placebo cases for all VOCs. DD1 nasal viral load positively correlated with bAb levels in the vaccine group. Conclusions: Following COVID-19, vaccinated participants had higher levels and greater breadth of antispike bAbs and higher nAb titers than unvaccinated participants. These were largely attributable to the primary immunization series.

20.
bioRxiv ; 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35860221

RESUMO

During the SARS-CoV-2 pandemic, multiple variants escaping pre-existing immunity emerged, causing concerns about continued protection. Here, we use antigenic cartography to analyze patterns of cross-reactivity among a panel of 21 variants and 15 groups of human sera obtained following primary infection with 10 different variants or after mRNA-1273 or mRNA-1273.351 vaccination. We find antigenic differences among pre-Omicron variants caused by substitutions at spike protein positions 417, 452, 484, and 501. Quantifying changes in response breadth over time and with additional vaccine doses, our results show the largest increase between 4 weeks and >3 months post-2nd dose. We find changes in immunodominance of different spike regions depending on the variant an individual was first exposed to, with implications for variant risk assessment and vaccine strain selection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA