Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Mol Sci ; 22(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073488

RESUMO

Kidney fibrosis is the final outcome of chronic kidney disease (CKD). Adenosine plays a significant role in protection against cellular damage by activating four subtypes of adenosine receptors (ARs), A1AR, A2AAR, A2BAR, and A3AR. A2AAR agonists protect against inflammation, and A3AR antagonists effectively inhibit the formation of fibrosis. Here, we showed for the first time that LJ-4459, a newly synthesized dual-acting ligand that is an A2AAR agonist and an A3AR antagonist, prevents the progression of tubulointerstitial fibrosis. Unilateral ureteral obstruction (UUO) surgery was performed on 6-week-old male C57BL/6 mice. LJ-4459 (1 and 10 mg/kg) was orally administered for 7 days, started at 1 day before UUO surgery. Pretreatment with LJ-4459 improved kidney morphology and prevented the progression of tubular injury as shown by decreases in urinary kidney injury molecular-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) excretion. Obstruction-induced tubulointerstitial fibrosis was attenuated by LJ-4459, as shown by a decrease in fibrotic protein expression in the kidney. LJ-4459 also inhibited inflammation and oxidative stress in the obstructed kidney, with reduced macrophage infiltration, reduced levels of pro-inflammatory cytokines, as well as reduced levels of reactive oxygen species (ROS). These data demonstrate that LJ-4459 has potential as a therapeutic agent against the progression of tubulointerstitial fibrosis.


Assuntos
Agonistas do Receptor A3 de Adenosina/farmacologia , Nefropatias/tratamento farmacológico , Receptor A2A de Adenosina/metabolismo , Receptor A3 de Adenosina/metabolismo , Obstrução Ureteral/tratamento farmacológico , Agonistas do Receptor A3 de Adenosina/síntese química , Agonistas do Receptor A3 de Adenosina/química , Animais , Fibrose , Nefropatias/etiologia , Nefropatias/metabolismo , Nefropatias/patologia , Ligantes , Masculino , Camundongos , Obstrução Ureteral/complicações , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia
2.
Int J Mol Sci ; 21(21)2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153232

RESUMO

Acute kidney injury (AKI), a critical syndrome characterized by a rapid decrease of kidney function, is a global health problem. Src family kinases (SFK) are proto-oncogenes that regulate diverse biological functions including mitochondrial function. Since mitochondrial dysfunction plays an important role in the development of AKI, and since unbalanced SFK activity causes mitochondrial dysfunction, the present study examined the role of SFK in AKI. Lipopolysaccharides (LPS) inhibited mitochondrial biogenesis and upregulated the expression of NGAL, a marker of tubular epithelial cell injury, in mouse proximal tubular epithelial (mProx) cells. These alterations were prevented by PP2, a pan SFK inhibitor. Importantly, PP2 pretreatment significantly ameliorated LPS-induced loss of kidney function and injury including inflammation and oxidative stress. The attenuation of LPS-induced AKI by PP2 was accompanied by the maintenance of mitochondrial biogenesis. LPS upregulated SFK, especially Fyn and Src, in mouse kidney as well as in mProx cells. These data suggest that Fyn and Src kinases are involved in the pathogenesis of LPS-induced AKI, and that inhibition of Fyn and Src kinases may have a potential therapeutic effect, possibly via improving mitochondrial biogenesis.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Lipopolissacarídeos , Doenças Mitocondriais/tratamento farmacológico , Pirimidinas/uso terapêutico , Quinases da Família src/antagonistas & inibidores , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Doenças Mitocondriais/etiologia , Doenças Mitocondriais/patologia , Biogênese de Organelas , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/farmacologia
3.
Korean J Physiol Pharmacol ; 22(5): 567-575, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30181703

RESUMO

Acute kidney injury (AKI), which is defined as a rapid decline of renal function, becomes common and recently recognized to be closely intertwined with chronic kidney diseases. Current treatment for AKI is largely supportive, and endoplasmic reticulum (ER) stress has emerged as a novel mediator of AKI. Since carbon monoxide attenuates ER stress, the objective of the present study aimed to determine the protective effect of carbon monoxide releasing molecule-2 (CORM2) on AKI associated with ER stress. Kidney injury was induced after LPS (15 mg/kg) treatment at 12 to 24 h in C57BL/6J mice. Pretreatment of CORM2 (30 mg/kg) effectively prevented LPS-induced oxidative stress and inflammation during AKI in mice. CORM2 treatment also effectively inhibited LPS-induced ER stress in AKI mice. In order to confirm effect of CO on the pathophysiological role of tubular epithelial cells in AKI, we used mProx24 cells. Pretreatment of CORM2 attenuated LPS-induced ER stress, oxidative stress, and inflammation in mProx24 cells. These data suggest that CO therapy may prevent ER stress-mediated AKI.

4.
Kidney Res Clin Pract ; 41(Suppl 2): S74-S88, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36239063

RESUMO

Diabetic kidney disease (DKD) is now a pandemic worldwide, and novel therapeutic options are urgently required. Adenosine, an adenosine triphosphate metabolite, plays a role in kidney homeostasis through interacting with four types of adenosine receptors (ARs): A1AR, A2AAR, A2BAR, and A3AR. Increasing evidence highlights the role of adenosine and ARs in the development and progression of DKD: 1) increased adenosine in the plasma and urine of diabetics with kidney injury, 2) increased expression of each of the ARs in diabetic kidneys, 3) the protective effect of coffee, a commonly ingested nonselective AR antagonist, on DKD, and 4) the protective effect of AR modulators in experimental DKD models. We propose AR modulators as a new therapeutic option to treat DKD. Detailed mechanistic studies on the pharmacology of AR modulators will help us to develop effective first-in-class AR modulators against DKD.

5.
Exp Mol Med ; 54(8): 1086-1097, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35918533

RESUMO

Src family kinases (SFKs) have been implicated in the pathogenesis of kidney fibrosis. However, the specific mechanism by which SFKs contribute to the progression of diabetic kidney disease (DKD) remains unclear. Our preliminary transcriptome analysis suggested that SFK expression was increased in diabetic kidneys and that the expression of Fyn (a member of the SFKs), along with genes related to unfolded protein responses from the endoplasmic reticulum (ER) stress signaling pathway, was upregulated in the tubules of human diabetic kidneys. Thus, we examined whether SFK-induced ER stress is associated with DKD progression. Mouse proximal tubular (mProx24) cells were transfected with Fyn or Lyn siRNA and exposed to high glucose and palmitate (HG-Pal). Streptozotocin-induced diabetic rats were treated with KF-1607, a novel pan-Src kinase inhibitor (SKI) with low toxicity. The effect of KF-1607 was compared to that of losartan, a standard treatment for patients with DKD. Among the SFK family members, the Fyn and Lyn kinases were upregulated under diabetic stress. HG-Pal induced p70S6 kinase and JNK/CHOP signaling and promoted tubular injury. Fyn knockdown but not Lyn knockdown inhibited this detrimental signaling pathway. In addition, diabetic rats treated with KF-1607 showed improved kidney function and decreased ER stress, inflammation, and fibrosis compared with those treated with losartan. Collectively, these findings indicate that Fyn kinase is a specific member of the SFKs implicated in ER stress activation leading to proximal tubular injury in the diabetic milieu and that pan-SKI treatment attenuates kidney injury in diabetic rats. These data highlight Fyn kinase as a viable target for the development of therapeutic agents for DKD.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/patologia , Estresse do Retículo Endoplasmático , Fibrose , Humanos , Rim/patologia , Losartan , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-fyn/genética , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Ratos , Quinases da Família src/metabolismo
6.
Oxid Med Cell Longev ; 2021: 9947772, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34326922

RESUMO

Acute kidney injury (AKI) most commonly appears in critically ill patients in hospitals. AKI is characterized as a quick deterioration of kidney function and has recently been identified to be tightly interlinked with chronic kidney diseases. The emerging major mediators of AKI include oxidative stress and endoplasmic reticulum (ER) stress. Carbon monoxide (CO) attenuates oxidative stress and ER stress in various cells, while Fyn, a member of the Src kinase family, is activated by oxidative stress and contributes to ER stress in skeletal muscle. Considering these, the objective of the current research was to determine (i) the involvement of Fyn in ER stress-mediated AKI and (ii) the effect of CO-releasing molecule-2 (CORM2) on reactive oxygen species- (ROS-) Fyn-ER stress-mediated AKI. Pretreatment with CORM2 (30 mg/kg) efficiently inhibited LPS (30 mg/kg)-induced oxidative stress, inflammation, and cellular apoptosis during AKI in C57BL/6J mice. Also, CORM2 efficiently suppressed the activation of Fyn and ER stress in AKI mice. Consistently, pretreatment with CORM2 inhibited oxidative stress, Fyn activation, ER stress, inflammation, and apoptosis in LPS- or H2O2-stimulated proximal epithelial tubular cells. Fyn inhibition using siRNA or an inhibitor (PP2) significantly attenuated ER stress responses in the cells. These data suggest that CORM2 may become a potential treatment option against ROS-Fyn-ER stress-mediated AKI.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Compostos Organometálicos/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Compostos Organometálicos/farmacologia , Transdução de Sinais
7.
Cells ; 10(12)2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34943814

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a global clinical problem. The MD2-TLR4 pathway exacerbates NAFLD progression by promoting inflammation. Long-term exercise is considered to improve NAFLD but the underlying mechanism is still unclear. In this study, we examined the protective effect and molecular mechanism of exercise on high-fat diet (HFD)-induced liver injury. In an HFD-induced NAFLD mouse model, exercise training significantly decreased hepatic steatosis and fibrosis. Interestingly, exercise training blocked the binding of MD2-TLR4 and decreased the downstream inflammatory response. Irisin is a myokine that is highly expressed in response to exercise and exerts anti-inflammatory effects. We found that circulating irisin levels and muscle irisin expression were significantly increased in exercised mice, suggesting that irisin could mediate the effect of exercise on NAFLD. In vitro studies showed that irisin improved lipid metabolism, fibrosis, and inflammation in palmitic acid (PA)-stimulated AML12 cells. Moreover, binding assay results showed that irisin disturbed MD2-TLR4 complex formation by directly binding with MD2 but not TLR4, and interfered with the recognition of stimuli such as PA and lipopolysaccharide with MD2. Our study provides novel evidence that exercise-induced irisin inhibits inflammation via competitive binding with MD2 to improve NAFLD. Thus, irisin could be considered a potential therapy for NAFLD.


Assuntos
Fibronectinas/metabolismo , Inflamação/patologia , Antígeno 96 de Linfócito/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Condicionamento Físico Animal , Animais , Ligação Competitiva , Circulação Sanguínea , Dieta Hiperlipídica , Fibronectinas/sangue , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Inflamação/sangue , Metabolismo dos Lipídeos , Fígado/lesões , Fígado/patologia , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , NF-kappa B/metabolismo , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Ácido Palmítico/toxicidade , Ligação Proteica , Receptor 4 Toll-Like/metabolismo
8.
Biomol Ther (Seoul) ; 28(3): 213-221, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32336052

RESUMO

Acute kidney injury (AKI) is a common disease with a complex pathophysiology which significantly contributes to the development of chronic kidney disease and end stage kidney failure. Preventing AKI can consequently reduce mortality, morbidity, and healthcare burden. However, there are no effective drugs in use for either prevention or treatment of AKI. Developing therapeutic agents with pleiotropic effects covering multiple pathophysiological pathways are likely to be more effective in attenuating AKI. Fyn, a nonreceptor tyrosine kinase, has been acknowledged to integrate multiple injurious stimuli in the kidney. Limited studies have shown increased Fyn transcription level and activation under experimental AKI. Activated Fyn kinase propagates various downstream signaling pathways associated to the progression of AKI, such as oxidative stress, inflammation, endoplasmic reticulum stress, as well as autophagy dysfunction. The versatility of Fyn kinase in mediating various pathophysiological pathways suggests that its inhibition can be a potential strategy in attenuating AKI.

9.
Free Radic Biol Med ; 148: 22-32, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31877356

RESUMO

Peroxisomes are essential organelles for maintaining the homeostasis of lipids and reactive oxygen species (ROS). While oxidative stress-induced endoplasmic reticulum (ER) stress plays an important role in nonalcoholic fatty liver disease (NAFLD), the role of peroxisomes in ROS-mediated ER stress in the development of NAFLD remains elusive. We investigated whether an impaired peroxisomal redox state accelerates NAFLD by activating ER stress by inhibiting catalase, an antioxidant expressed exclusively in peroxisomes. Wild-type (WT) and catalase knockout (CKO) mice were fed either a normal diet or a high-fat diet (HFD) for 11 weeks. HFD-induced phenotype changes and liver injury accompanied by ER stress and peroxisomal dysfunction were accelerated in CKO mice compared to WT mice. Interestingly, these changes were also significantly increased in CKO mice fed a normal diet. Inhibition of catalase by 3-aminotriazole in hepatocytes resulted in the following effects: (i) increased peroxisomal H2O2 levels as measured by a peroxisome-targeted H2O2 probe (HyPer-P); (ii) elevated intracellular ROS; (iii) decreased peroxisomal biogenesis; (iv) activated ER stress; (v) induced lipogenic genes and neutral lipid accumulation; and (vi) suppressed insulin signaling cascade associated with JNK activation. N-acetylcysteine or 4-phenylbutyric acid effectively prevented those alterations. These results suggest that a redox imbalance in peroxisomes perturbs cellular metabolism through the activation of ER stress in the liver.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Catalase/genética , Catalase/metabolismo , Estresse do Retículo Endoplasmático , Peróxido de Hidrogênio/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Oxirredução , Estresse Oxidativo , Peroxissomos/metabolismo
10.
Free Radic Biol Med ; 131: 162-172, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30529270

RESUMO

Chronic kidney disease (CKD) has become epidemic worldwide. Mitochondrial reactive oxygen species (ROS)-induced oxidative stress is an important mediator of CKD, and Prx3 plays a critical role in maintenance of mitochondrial ROS. The present study examined the role of Prx3 in the context of fibrosis, a common feature of CKD, using Prx3 KO mice under obstructive and diabetic stress. Prx3 deficiency accelerated fibrosis and inflammation accompanied by mitochondrial oxidative stress in obstructed and diabetic kidneys as well as in proximal tubular epithelial (mProx) cells. In addition, Prx3 deficiency induced Raw264.7 macrophages activation, leading to upregulation of proinflammatory cytokines. Conditioned media from LPS-stimulated Prx3 deficient macrophages accelerated proinflammatory and profibrotic cytokines in mProx cells. Interestingly, Prx3 deficiency induced most inflammatory and fibrotic cytokines at basal condition in both tissues and cells. Taken together, these results demonstrate that Prx3 deficiency can accelerate CKD through interactions between macrophages and tubular epithelial cells.


Assuntos
Diabetes Mellitus Experimental/genética , Células Epiteliais/metabolismo , Proteínas de Homeodomínio/genética , Túbulos Renais/metabolismo , Insuficiência Renal Crônica/genética , Animais , Arginase/genética , Arginase/metabolismo , Comunicação Celular , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Meios de Cultivo Condicionados/farmacologia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Fibronectinas/genética , Fibronectinas/metabolismo , Fibrose , Regulação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/patologia , Ativação de Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Cultura Primária de Células , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Transdução de Sinais , Estreptozocina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA