RESUMO
Large negative photoconductance (NPC) of SnO2/TiO2 nanoparticles (NPs) heterostructure has been observed with thin film transistor (TFT) geometry and has been investigated using sub-bandgap light (blue) illumination. This negative photoconduction has been detected both in accumulation and depletion mode operation, which effectively reduces the carrier mobility (µ) of the TFT. Moreover, the threshold voltage (Vth) widely shifted in the positive direction under illumination. The combined effects of the reduction of mobility and Vth shifting led to a faster reduction of On (or Off) state current under illumination. The negative photosensitivity of this system is as high as 3.2 A W-1, which has been rarely reported in the earlier literature. Moreover, the variation of On (or Off) current, µ and Vth shift is linear with low-intensity blue light. This SnO2/TiO2 NP bilayer channel has been deposited on top of an ionic dielectric (Li-Al2O3) that reduces its operating voltage of this TFT within 2 V. Furthermore, the device has achieved a saturation mobility of 0.4 cm2 V-1 s-1 with an on/off ratio of 7.4 × 103 in the dark. An energy band diagram model has been proposed based on the type-II heterostructure formation between SnO2/TiO2 semiconductors to explain this NPC mechanism. According to the energy band diagram model, adsorbed H2O molecules of TiO2 NPs created a depleted layer in the heterostructure that accelerated the recombination process of photo-generated carriers rather than its transport.
RESUMO
We use a simple device architecture based on a poly(3,4-ethylendioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-coated indium tin oxide anode and a LiF/Al cathode to assess the effects of shell thickness on the properties of light-emitting diodes (LEDs) comprising CdSe/CdS core/shell nanocrystal quantum dots (NQDs) as the emitting layer. Specifically, we are interested in determining whether LEDs based on thick-shell nanocrystals, so-called "giant" NQDs, afford enhanced performance compared to their counterparts incorporating thin-shell systems. We observe significant improvements in device performance as a function of increasing shell thickness. While the turn-on voltage remains approximately constant for all shell thicknesses (from 4 to 16 CdS monolayers), external quantum efficiency and maximum luminance are found to be about one order of magnitude higher for thicker shell nanocrystals (≥13 CdS monolayers) compared to thinner shell structures (<9 CdS monolayers). The thickest-shell nanocrystals (16 monolayers of CdS) afforded an external quantum efficiency and luminance of 0.17% and 2000 Cd/m(2), respectively, with a remarkably low turn-on voltage of ~3.0 V.
Assuntos
Compostos de Cádmio/química , Iluminação/instrumentação , Medições Luminescentes/instrumentação , Nanoestruturas/química , Pontos Quânticos , Compostos de Selênio/química , Semicondutores , Sulfetos/química , Cristalização/métodos , Condutividade Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento , Nanoestruturas/ultraestrutura , Tamanho da PartículaRESUMO
Sodium beta-alumina (SBA) has high two-dimensional conductivity, owing to mobile sodium ions in lattice planes, between which are insulating AlO(x) layers. SBA can provide high capacitance perpendicular to the planes, while causing negligible leakage current owing to the lack of electron carriers and limited mobility of sodium ions through the aluminium oxide layers. Here, we describe sol-gel-beta-alumina films as transistor gate dielectrics with solution-deposited zinc-oxide-based semiconductors and indium tin oxide (ITO) gate electrodes. The transistors operate in air with a few volts input. The highest electron mobility, 28.0 cm2 V(-1) s(-1), was from zinc tin oxide (ZTO), with an on/off ratio of 2 x 10(4). ZTO over a lower-temperature, amorphous dielectric, had a mobility of 10 cm2 V(-1) s(-1). We also used silicon wafer and flexible polyimide-aluminium foil substrates for solution-processed n-type oxide and organic transistors. Using poly(3,4-ethylenedioxythiophene) poly(styrenesulphonate) conducting polymer electrodes, we prepared an all-solution-processed, low-voltage transparent oxide transistor on an ITO glass substrate.
RESUMO
A heavy-metal-free chalcopyrite (CuFeS2) nanocrystal has been synthesized via microwave-assisted growth. Large-scale nanocrystals with an average particle size of 5 nm are fabricated by this technique within a very short period of time without any need for organic ligands. Scanning electron microscopy study (SEM) of individual synthesis steps indicates that aggregates of nanocrystals are formed as flakes during microwave-assisted synthesis. The colloidal solution of the CuFeS2 nanocrystal was prepared by sonicating these flakes. Transmission electron microscopy (TEM) study reveals the growth of sub-10 nm CuFeS2 nanocrystals that are further characterized by X-ray diffraction. UV-visible absorption spectroscopic study shows that the band gap of this nanocrystal is â¼1.3 eV. To investigate the photosensitive nature of this nanocrystal, a bilayer p-n heterojunction photodetector has been fabricated using this nontoxic CuFeS2 nanocrystal as a photoactive material and n-type ZnO as a charge-transport layer. The detectivity of this photodetector reaches above 1012 Jones in visible and near-infrared (NIR) regions under 10 V external bias, which is significantly high for a nontoxic nanocrystal-based photodetector.
RESUMO
All solution-processed, high performance hybrid light emitting transistors (HLETs) are realized. Using a novel combination of device architecture and materials a bilayer device comprised of an inorganic and organic semiconducting layer is fabricated and the optoelectronic properties are presented.
RESUMO
Colloidal nanocrystals (NCs) of lead chalcogenides are a promising class of tunable infrared materials for applications in devices such as photodetectors and solar cells. Such devices typically employ electronic materials in which charge carrier concentrations are manipulated through "doping;" however, persistent electronic doping of these NCs remains a challenge. Here, we demonstrate that heavily doped n-type PbSe and PbS NCs can be realized utilizing ground-state electron transfer from cobaltocene. This allows injecting up to eight electrons per NC into the band-edge state and maintaining the doping level for at least a month at room temperature. Doping is confirmed by inter- and intra-band optical absorption, as well as by carrier dynamics. Finally, FET measurements of doped NC films and the demonstration of a p-n diode provide additional evidence that the developed doping procedure allows for persistent incorporation of electrons into the quantum-confined NC states.