Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cancer ; 16(1): 126, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28724437

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) play a variety of cellular roles, including regulation of transcription and translation, leading to alterations in gene expression. Some lncRNAs modulate the expression of chromosomally adjacent genes. Here, we assess the roles of the lncRNA CASC15 in regulation of a chromosomally nearby gene, SOX4, and its function in RUNX1/AML translocated leukemia. RESULTS: CASC15 is a conserved lncRNA that was upregulated in pediatric B-acute lymphoblastic leukemia (B-ALL) with t (12; 21) as well as pediatric acute myeloid leukemia (AML) with t (8; 21), both of which are associated with relatively better prognosis. Enforced expression of CASC15 led to a myeloid bias in development, and overall, decreased engraftment and colony formation. At the cellular level, CASC15 regulated cellular survival, proliferation, and the expression of its chromosomally adjacent gene, SOX4. Differentially regulated genes following CASC15 knockdown were enriched for predicted transcriptional targets of the Yin and Yang-1 (YY1) transcription factor. Interestingly, we found that CASC15 enhances YY1-mediated regulation of the SOX4 promoter. CONCLUSIONS: Our findings represent the first characterization of this CASC15 in RUNX1-translocated leukemia, and point towards a mechanistic basis for its action.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/genética , Leucemia Mieloide Aguda/genética , RNA Longo não Codificante/genética , Fatores de Transcrição SOXC/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Criança , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Prognóstico , Regiões Promotoras Genéticas/genética , Translocação Genética/genética , Fator de Transcrição YY1/genética
2.
J Antimicrob Chemother ; 69(2): 404-15, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24022068

RESUMO

OBJECTIVES: A region in the conserved 5' long terminal repeat (LTR) promoter of the integrated HIV-1C provirus was identified for effective targeting by a short double-stranded RNA (dsRNA) to cause heterochromatization leading to a long-lasting decrease in viral transcription, replication and subsequent productive infection in human host cells. METHODS: Small interfering RNAs (siRNAs) were transfected into siHa cells containing integrated LTR-luciferase reporter constructs and screened for efficiency of inducing transcriptional gene silencing (TGS). TGS was assessed by a dual luciferase assay and real-time PCR. Chromatin modification at the targeted region was also studied. The efficacy of potent siRNA was then checked for effectiveness in TZM-bl cells and human peripheral blood mononuclear cells (PBMCs) infected with HIV-1C virus. Viral Gag-p24 antigen levels were determined by ELISA. RESULTS: One HIV-1C LTR-specific siRNA significantly decreased luciferase activity and its mRNA expression with no such effect on HIV-1B LTR. This siRNA-mediated TGS was induced by histone methylation, which leads to heterochromatization of the targeted LTR region. The same siRNA also substantially suppressed viral replication in TZM-bl cells and human PBMCs infected with various HIV-1C clinical isolates for ≥3 weeks after a single transfection, even of a strain that had a mismatch in the target region. CONCLUSIONS: We have identified a potent dsRNA that causes long-term suppression of HIV-1C virus production in vitro and ex vivo by heritable epigenetic modification at the targeted C-LTR region. This dsRNA has promising therapeutic potential in HIV-1C infection, the clade responsible for more than half of AIDS cases worldwide.


Assuntos
Repetição Terminal Longa de HIV/genética , HIV-1/genética , Leucócitos Mononucleares/fisiologia , Leucócitos Mononucleares/virologia , Provírus/genética , RNA de Cadeia Dupla/genética , Replicação Viral/genética , Linhagem Celular , Células Cultivadas , Inativação Gênica/fisiologia , HIV-1/metabolismo , Humanos , Provírus/metabolismo , Ativação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA